Merchant Manual (RU) New v118

0

Contents
1	Read before reading the documentation.	12
2	Glossary	13
3	Algorithm to connect to the Payment Gateway	15
4	General description of the methods of interaction with the Payment Gateway	17
4.1	Payment mechanisms (one-phase and two-phase)	17
4.2	Schemes of interaction with the Payment Gateway	17
4.3	Interfaces of interaction with the Payment Gateway	19
4.4	Connection URLs	20
5	Description of the interaction schemes	23
5.1	One-phase payment with specifying card data on the payment page	23
5.1.1	Scenario of a payment for an order	23
5.1.2	Cancellation of a payment for an order	26
5.1.3	Refund of a payment for an order	27
5.1.4	Check for enrolment of a card to 3D-Secure	27
5.1.5	Adding additional parameters to an order	27
5.1.6	Payment statistics for a certain period	28
5.1.7	Adding a card to the list of SSL-cards	28
5.2	Two-phase payment with specifying card data on the payment page	29
5.2.1	Scenario of a payment for an order	29
5.2.2	Cancellation of a payment for an order	32
5.2.3	Refund of a payment for an order	33
5.2.4	Check for enrolment of a card to 3D-Secure	33
5.2.5	Adding additional parameters to an order	34
5.2.6	Payment statistics for a certain period	34
5.2.7	Adding a card to the list of SSL-cards	34
5.3	Payment with the aid of a binding on the payment page	34
5.3.1	General description of the autocompletetion functionality on the payment page	34
5.3.2	Scenario of a payment for an order	37
5.3.3	Getting the bindings list of a customer	40
5.3.4	Getting the bindings list of a bank card	40
5.3.5	Deactivating/activating an existing binding	40
5.3.6	Changing the validity period of a binding	40
5.3.7	Adding a card to the list of SSL-cards	41
5.4	One-phase auto-payments	42
5.4.1	Scenario of executing an initial payment	42
5.4.2	Scenario of executing an auto-payment	45
5.4.3	Getting the bindings list of a customer	46
5.4.4	Deactivating/activating an existing binding	46
5.4.5	Changing the validity period of a binding	47
5.4.6	Adding a card to the list of SSL-cards	47
5.5	Two-phase auto-payments	48
5.5.1	Scenario of executing an initial payment	48
5.5.2	Scenario of executing an auto-payment	52
5.5.3	Getting the bindings list of a customer	53
5.5.4	Deactivating/activating an existing binding	53
5.5.5	Changing the validity period of a binding	53
5.5.6	Adding a card to the list of SSL-cards	53
5.6	Using "Alfa-click" to pay for an order	54
5.6.1	Short description of the PayByClick system	54
5.6.2	Scenario of a payment for an order	54
5.6.3	Testing a payment through "Alfa-click"	58
5.7	Using UPOP to pay for an order	61
5.7.1	Short description of the CUP system	61
5.7.2	Scenario of a payment for an order	62
5.7.3	Testing a payment through UPOP	66
5.7.4	Refunds for orders paid through UPOP	72
5.8	Payment using Apple Pay	72
5.8.1	Merchant actions necessary to connect to Apple Pay	72
5.8.2	Interaction scheme on a payment with Apple Pay	74
5.8.3	Executing recurring payments through Apple Pay	76
5.8.4	Apple Pay - links to the reference information	76
5.9	Payment using Android Pay	79
5.9.1	Preliminary actions	79
5.9.2	Interaction schemes on a payment with Android Pay	81
5.10	Payment using Samsung Pay	83
5.10.1	Preliminary actions	83
5.10.2	Scheme with the use of the mobile application	83
6	Payment page	86
6.1	Using a standard payment page	86
6.2	Using your own payment page	89
6.3	Requirements for the pages of the payment interface	92
6.3.1	General requirements for the file containing the payment interface	92
6.3.2	Requirements for the payment page	94
6.3.3	Requirements for the payment page in case of passing a binding ID in the registration request	104
6.3.4	Requirements for the errors page	107
6.3.5	Requirements for the final page	108
6.3.6	Requirements for the receipt page	111
7	Plug-ins and code examples for the integration with the gateway	114
8	Request specifications	124
8.1	Web-Service interface	124
8.1.1	Order registration request	124
8.1.2	Registration request for orders with pre-authorization	131
8.1.3	Order payment completion request	138
8.1.4	Order status request	140
8.1.5	Extended order status request	143
8.1.6	Order payment cancellation request	151
8.1.7	Order payment refund request	153
8.1.8	Request for checking a card for 3D-Secure enrolment	155
8.1.9	Request for adding additional parameters to an order	157
8.1.10	Request for payments statistics for a period	159
8.1.11	Request for a payment through an external payment network	166
8.1.12	Request for processing a payment by a binding	169
8.1.13	Request for a binding deactivation	173
8.1.14	Request for a binding activation	174
8.1.15	Request for changing the validity period of a binding	176
8.1.16	Request for the list of bindings of a customer	178
8.1.17	Request for the list of bindings of a bank card	180
8.1.18	Request for adding a card to the list of SSL-cards	183
8.1.19	Request for a payment through Apple Pay	185
8.1.20	Request for executing recurring payments through Apple Pay	194
8.1.21	Request for a payment through Android Pay	196
8.1.22	Request for a payment through Samsung Pay	201
8.2	REST interface	205
8.2.1	Order registration request	205
8.2.2	Registration request for orders with pre-authorization	211
8.2.3	Order payment completion request	217
8.2.4	Order status request	219
8.2.5	Extended order status request	222
8.2.6	Order payment cancellation request	229
8.2.7	Order payment refund request	231
8.2.8	Request for checking a card for enrolment to 3D-Secure	232
8.2.9	Request for adding additional parameters to an order	234
8.2.10	Request for payments statistics for a period	235
8.2.11	Request for a payment through an external payment system	242
8.2.12	Request for executing a payment by a binding	244
8.2.13	Request for deactivation of a binding	247
8.2.14	Request for activation of a binding	248
8.2.15	Request for changing the validity period of a binding	249
8.2.16	Request for the list of binding of a customer	251
8.2.17	Request for the list of binding of a bank card	252
8.2.18	Request for adding a card to the list of SSL-cards	254
8.2.19	Request for a payment through Apple Pay	257
8.2.20	Request for executing recurring payments through Apple Pay	266
8.2.21	Request for a payment through Android Pay	269
8.2.22	Request for a payment through Samsung Pay	273
9	Test cards	278
10	Appendix 1. External fee for payments	283
10.1	Supplement to the description of the payment page	283
10.2	Testing	283
11	Appendix 2. Specification of additional fields for air-commerce payments and hotels booking	286
11.1	Additional information passed in air-commerce	286
11.2	Additional information passed on booking and paying for an hotel	289
12	Appendix 3. Response codes - interpretation of actionCode (responses from the processing system)	292

[bookmark: scroll-bookmark-1]
· Read before reading the documentation.
· Glossary
· Algorithm to connect to the Payment Gateway
· General description of the methods of interaction with the Payment Gateway
· Payment mechanisms (one-phase and two-phase)
· Schemes of interaction with the Payment Gateway
· Interfaces of interaction with the Payment Gateway
· Connection URLs
· Description of the interaction schemes
· One-phase payment with specifying card data on the payment page
· Scenario of a payment for an order
· Cancellation of a payment for an order
· Refund of a payment for an order
· Check for enrolment of a card to 3D-Secure
· Adding additional parameters to an order
· Payment statistics for a certain period
· Adding a card to the list of SSL-cards
· Two-phase payment with specifying card data on the payment page
· Scenario of a payment for an order
· Cancellation of a payment for an order
· Refund of a payment for an order
· Check for enrolment of a card to 3D-Secure
· Adding additional parameters to an order
· Payment statistics for a certain period
· Adding a card to the list of SSL-cards
· Payment with the aid of a binding on the payment page
· General description of the autocompletetion functionality on the payment page
· Scenario of a payment for an order
· Getting the bindings list of a customer
· Getting the bindings list of a bank card
· Deactivating/activating an existing binding
· Changing the validity period of a binding
· Adding a card to the list of SSL-cards
· One-phase auto-payments
· Scenario of executing an initial payment
· Scenario of executing an auto-payment
· Getting the bindings list of a customer
· Deactivating/activating an existing binding
· Changing the validity period of a binding
· Adding a card to the list of SSL-cards
· Two-phase auto-payments
· Scenario of executing an initial payment
· Scenario of executing an auto-payment
· Getting the bindings list of a customer
· Deactivating/activating an existing binding
· Changing the validity period of a binding
· Adding a card to the list of SSL-cards
· Using "Alfa-click" to pay for an order
· Short description of the PayByClick system
· Scenario of a payment for an order
· Using "Alfa-click" and e-commerce
· Using solely "Alfa-click"
· Testing a payment through "Alfa-click"
· Using UPOP to pay for an order
· Short description of the CUP system
· Scenario of a payment for an order
· Using UPOP and e-commerce
· Using solely UPOP
· Testing a payment through UPOP
· Testing process
· Test China UnionPay cards
· Refunds for orders paid through UPOP
· Payment using Apple Pay
· Merchant actions necessary to connect to Apple Pay
· Actions in the personal area of the Payment Gateway
· Creating Merchant ID
· Creating a certificate for Merchant ID
· Interaction scheme on a payment with Apple Pay
· Executing recurring payments through Apple Pay
· Apple Pay - links to the reference information
· Payment using Android Pay
· Preliminary actions
· Interaction schemes on a payment with Android Pay
· Scheme with the use of the mobile application
· Scheme with the use of the site adapted for mobile applications
· Payment using Samsung Pay
· Preliminary actions
· Scheme with the use of the mobile application
· Payment page
· Using a standard payment page
· Using your own payment page
· Requirements for the pages of the payment interface
· General requirements for the file containing the payment interface
· Requirements for the payment page
· Page name
· Page header
· Page body
· Mandatory elements on the payment page
· Placing additional elements on the payment page
· Displaying payment parameters
· Displaying additional parameters of an order
· Notifying a customer about an executed operation
· Displaying the amount of the fee
· Check box of saving the card data of a payment
· Card data validation
· Requirements for the payment page in case of passing a binding ID in the registration request
· Page name
· Page header
· Page body
· Requirements for the errors page
· Page name
· Page header
· Page body
· Requirements for the final page
· Page name
· Page header
· Page body
· Requirements for the receipt page
· Page name
· Requirements for creation of a page
· Plug-ins and code examples for the integration with the gateway
· Request specifications
· Web-Service interface
· Order registration request
· Registration request for orders with pre-authorization
· Order payment completion request
· Order status request
· Extended order status request
· Order payment cancellation request
· Order payment refund request
· Request for checking a card for 3D-Secure enrolment
· Request for adding additional parameters to an order
· Request for payments statistics for a period
· Request for a payment through an external payment network
· Request for processing a payment by a binding
· Request for a binding deactivation
· Request for a binding activation
· Request for changing the validity period of a binding
· Request for the list of bindings of a customer
· Request for the list of bindings of a bank card
· Request for adding a card to the list of SSL-cards
· Request for a payment through Apple Pay
· Request for executing recurring payments through Apple Pay
· Request for a payment through Android Pay
· Request for a payment through Samsung Pay
· REST interface
· Order registration request
· Registration request for orders with pre-authorization
· Order payment completion request
· Order status request
· Extended order status request
· Order payment cancellation request
· Order payment refund request
· Request for checking a card for enrolment to 3D-Secure
· Request for adding additional parameters to an order
· Request for payments statistics for a period
· Request for a payment through an external payment system
· Request for executing a payment by a binding
· Request for deactivation of a binding
· Request for activation of a binding
· Request for changing the validity period of a binding
· Request for the list of binding of a customer
· Request for the list of binding of a bank card
· Request for adding a card to the list of SSL-cards
· Request for a payment through Apple Pay
· Request for executing recurring payments through Apple Pay
· Request for a payment through Android Pay
· Request for a payment through Samsung Pay
· Test cards
· Appendix 1. External fee for payments
· Supplement to the description of the payment page
· Testing
· Appendix 2. Specification of additional fields for air-commerce payments and hotels booking
· Additional information passed in air-commerce
· Additional information passed on booking and paying for an hotel
· Appendix 3. Response codes - interpretation of actionCode (responses from the processing system)

[bookmark: _Toc256000000][bookmark: scroll-bookmark-2]Read before reading the documentation.
	Any use of the functions or functionality of the system outside the scope of this document is at your own risk.

[bookmark: _Toc256000001][bookmark: scroll-bookmark-3]Glossary
· 3-D Secure – a technology of Visa IPS that enables additional authorization of a user of funds of the issuing bank.

· ACS – Access Control Server, an element of the 3-D Secure infrastructure that enables validation of a payer on the side of the issuing bank.

· Merchant Plugin Interface (MPI) – a technological component of 3-D Secure and SecureCode that can be placed on the payment network side or on the side of the merchant.

· SecureCode – a technology of MasterCard IPS that enables additional authorization of a user of funds of the issuing bank. Technologically, it is equal to 3-D Secure. In the text below, mentioning 3-D Secure implies also SecureCode.

· Refund - a partial or full refund of funds to a buyer's card in case of their refusal to receive the goods or services or in case of returning them. The refund operation is performed after the funds are debited from the buyer's account.

· Bank card – a card of an international payment system Visa or MasterCard.

· Acquiring bank – a bank that implements and uses the payment gateway.

· Issuing bank – a bank that has issued the card of a customer.

· Two-phase payment – an operation of paying for goods or services executed through the Internet with the use of bank cards and requiring additional confirmation. Two-phase mechanism of work enables splitting the process into checking whether the card is capable of paying (authorization) and debiting the money from the account (financial confirmation). On the first phase of a two-phase payment, a bank card is checked for its solvency and funds are put on hold on the customer's account.

· Order – an elementary entity in the system, it describes an order in a certain online store or its analog. Any order has its amount.

· Store (merchant) – a trade or service company selling goods or services through an Internet-site.

· IPS – an international payment system (for example, Visa or MasterCard).

· One-phase payment – a payment operation for goods or services executed through the Internet with the use of a bank card that does not require additional confirmation.

· Reversal – cancellation of a payment operation, removing from hold funds on the buyer's card. This operation is available within a limited time period, the exact duration should be found out in the bank.

· Payer – a person paying with their card for the Merchant's services in the Merchant's online store.

· Payment form – an HTML-page that is used by the customer to enter the payment details.

· Payment details – requisites used by the customer to pay for an order. Usually they represent a card number, expiration date, and CVC.

· Payment gateway of the acquiring bank – an automatic system that allows a store to receive payments and to a customer to send payments through the Internet using bank cards.

· Binding – a correspondence between the payer and the payment details of a card (the card number, its validity period).
[bookmark: _Toc256000002][bookmark: scroll-bookmark-4]Algorithm to connect to the Payment Gateway
To connect to the payment gateway, an online store needs:
1. To receive logins and passwords to the test server from the Bank staff:
1.
a.
i. A login with the "-api" suffix – to connect to the programming interface (API);
ii. A login with the "-operator" suffix – to work in the personal area through the web-interface.
2. To place the payment page on the test server. The following options are available:
·
·
· The store can use a standard page https://web.rbsuat.com/ab/merchants/rbs/payment_ru.html .
· The store can use the standard page, having placed on it the store logo or footer or both. The description is in section 5.1 Using the standard payment page.
· A merchant can create its own page. The detailed description of creation of a page is present in section 5.2. Using own payment page.
3. To implement integration according to this document. To simplify the work performed, plug-ins and code samples can be used for the integration with the gateway. See section 6 Plug-ins and code samples for the integration with the gateway.
4. To check the solution work using the test cards (they are listed in section 8. Test cards) through:
1.
a.
i. REST interface or Web-Service interface;
ii. the personal area in the administrative console.
For this check it is necessary:
1.
a.
i. to process several orders successfully paid and unsuccessfully paid;
ii. to check that a correct status is displayed on the payment result page and to compare it with the status in the personal area;
iii. to process a payment completion (in case of using a two-phase scheme), cancellation and refund.
5. After testing, it is necessary to notify the bank that the integration is ready to work in the production environment. It is advisable to provide the address of the testing resource through which the Bank staff could process verification payments.
6. After the integration and payment page (in case it had been created by the store) have been successfully checked, under the condition of the contract has been signed, the store is provided with the credentials for connection to the production environment.
Note: Further, you can change the payment page on the production server at any time. To do this, it is necessary to download a new page to the test server, check its functionality and to send a request to the support service to change the page on the production server (usually the process takes no more than a day)
7. After receiving logins and passwords for the production server, it is necessary to process verification payments using a real card: to pay an order, cancel and (or) refund it.

[bookmark: _Toc256000003][bookmark: scroll-bookmark-5]General description of the methods of interaction with the Payment Gateway
Paying by a bank card for goods and services through the Internet can be performed with passing the complete card details to the payment gateway using bindings as well as using external payment systems.
[bookmark: _Toc256000004][bookmark: scroll-bookmark-6]Payment mechanisms (one-phase and two-phase)
A store can use the one-phase or two-phase mechanism of accepting a payment:
· One-phase payment – an operation of paying for goods or services processed through the Internet with the use of bank cards that does not require additional confirmation (the same request initiates at once putting on hold and debiting funds from a card).

· Two-phase payment – an operation of paying for goods or services processed through the Internet with the use of bank cards that does not require additional confirmation. Two-phase mechanism enables splitting the process into checking whether a bank card has enough funds for a payment (authorization) and debiting funds from the card (financial confirmation). The first request initiates a check for the card's solvency and puts an amount on hold on the customer's account; the second request initiates debiting the amount from the card.
[bookmark: _Toc256000005][bookmark: scroll-bookmark-7]Schemes of interaction with the Payment Gateway
Various connection schemes are available for a merchant to integrate with the payment gateway depending on the payment mechanism used (one-phase or two-phase) and on the means of payment. The present document represents the following connection schemas:
· Section 4.1 One-phase payment with specifying card data on the payment page describes a scheme in which to pay an order a customer enters his or her card details on the payment page, from which the card details are passed to the payment gateway to process the payment.

· Section 4.2 Two-phase payment with specifying card data on the payment page describes a scheme in which to pay an order a customer enters his or her card details on the payment page, from which the card details are passed to the payment gateway to process the two-phase payment.

· Section 4.3 Payment with the aid of a binding on the payment page describes a scheme in which a customer card is associated with the customer identifier in the store. This enables offering to authorized users autocompletion of the card data fields on the payment page.

· A scheme described in section 4.4 One-phase auto-payments assumes that a customer makes an initial payment on the payment page with an agreement to activate the "Auto-payment" service. After this, the store independently tracks the date when it is necessary to process a subsequent payment and initiates a payment without additionally entering the card data (without the participation of the customer).

· A scheme described in section 4.5 Two-phase auto-payments assumes that a customer makes an initial payment on the payment page with an agreement to activate the "Auto-payment" service. After this, the store independently tracks the date when it is necessary to process a subsequent payment and initiates a payment without additionally entering the card data (without the participation of the customer).

· Section 4.6 Using "Alfa-click" to pay for an order describes a payment scheme that is available only to customers of the "Alfa-click" Internet bank . With this scheme, entering payment details is performed externally, on the side of the PayByClick system.

· Section 4.7 Using UPOP to pay for an order describes a payment scheme that is available only to holders of China UnionPay cards. With this scheme, entering payment details is performed externally, on the side of the China UnionPay system.
· Section 4.8 Payment using Apple Pay describes a payment scheme that is available to owners of Apple mobile devices through the Apple Pay system.

Depending on the interaction scheme that a merchant uses, it is necessary to use a certain set of requests. The descriptions of the above mentioned scenarios specify at what step a request must be used and also contain links to sections with the request specifications.
The available interfaces of interaction with the payment gateway are present in the next section.

[bookmark: _Toc256000006][bookmark: scroll-bookmark-8]Interfaces of interaction with the Payment Gateway
A store to interact with the payment gateway can use one of these interfaces: the WebService interface or REST.
To authorize a call of the store to the payment gateway system, any request from the store must contain the store name and password received on the store registration in the system. The detailed information about calls authorization is provided below.:
· Implementation of interaction though the interface using Web-Service:
The description (WSDL) of the service is stored on the test server that is available without restrictions.
The values of the login and password are passed in the format described in the WS-Security specification, the authorization type is userName token. The header with an authorization of this type will look, for example, as follows:
	<wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd" xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
%20wssecurity-utility-1.0.xsd">
 <wsse:UsernameToken wsu:Id="UsernameToken-87">
 <wsse:Username>aa</wsse:Username>
 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-
 token-profile-1.0#PasswordText">123456</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>

If the response to this request contains an errorCode = 0, it means that the request has been processed by the payment gateway without system errors. Meanwhile, errorCode does not display the order status.
To get the order status it is necessary to use the getOrderStatus or getOrderStatusExtended request (it is mandatory to implement one of these methods in the integration of a merchant and the payment gateway).
· Implementation of interaction though the REST interface
Interaction is implemented as HTTP-calls with the GET or POST methods to certain URLs. Parameters are passed as parameters of GET or POST requests, their values must be compatible with the URL (that is, URL-encoded).
The result of processing a request is returned as a JSON-object. For example: {"errorCode":"12","errorMessage":"Empty amount"}
The values of the login and password are passed in the following parameters:
	Name
	Type
	Mandatory
	Description

	userName
	AN..30
	yes
	Store login received on the connection

	password
	AN..30
	yes
	Store password received on the connection

All the text fields must be in the Unicode encoding (UTF-8).
Special characters in a REST request must be escaped in conformance with the URL-code. The table of symbols is stored at the following location: http://web-developer.name/urlcode/. For example, the password "qwe?rt%y" must be passed as "qwe%0Frt%25y".

If the response to this request contains an errorCode = 0, it means that the request has been processed by the payment gateway without system errors. Meanwhile, errorCode does not display the order status.
To get the order status, it is necessary to use the getOrderStatus.do or getOrderStatusExtende.do request (it is mandatory to implement one of these methods in the integration of a merchant and the payment gateway).

The connection URLs for the WebService and REST interfaces are present in the following section.
[bookmark: _Toc256000007][bookmark: scroll-bookmark-9]Connection URLs
When registering a merchant, the merchant representative is provided with a login/password couple that must be used in the protocols.

The description of the test service (WSDL) is stored at the following address:
https://web.rbsuat.com/ab/webservices/merchant-ws?wsdl

The URL to access the REST methods:
	Method name
	URL-address

	Order registration
	https://web.rbsuat.com/ab/rest/register.do

	Order registration with pre-authorization
	https://web.rbsuat.com/ab/rest/registerPreAuth.do

	Order payment completion request
	https://web.rbsuat.com/ab/rest/deposit.do

	Order status request
	https://web.rbsuat.com/ab/rest/getOrderStatus.do

	Extended order status request
	https://web.rbsuat.com/ab/rest/getOrderStatusExtended.do

	Order payment cancellation request
	https://web.rbsuat.com/ab/rest/reverse.do

	Order payment refund request
	https://web.rbsuat.com/ab/rest/refund.do

	Request for checking a card for enrolment to 3D-Secure
	https://web.rbsuat.com/ab/rest/verifyEnrollment.do

	Request for adding additional parameters to an order
	https://web.rbsuat.com/ab/rest/addParams.do

	Request for payments statistics for a period
	https://web.rbsuat.com/ab/rest/getLastOrdersForMerchants.do

	Request for a payment through an external payment network
	https://web.rbsuat.com/ab/rest/paymentotherway.do

	Request for adding a card number to the list of SSL-cards
	https://web.rbsuat.com/ab/rest/updateSSLCardList.do

	Request for processing a payment by a binding
	https://web.rbsuat.com/ab/rest/paymentOrderBinding.do

	Request for a binding deactivation
	https://web.rbsuat.com/ab/rest/unBindCard.do

	Request for a binding activation
	https://web.rbsuat.com/ab/rest/bindCard.do

	Request for changing the validity period of a binding
	https://web.rbsuat.com/ab/rest/extendBinding.do

	Request for the list of bindings of a customer
	https://web.rbsuat.com/ab/rest/getBindings.do

	Request for the list of bindings of a certain bank card
	https://web.rbsuat.com/ab/rest/getBindingsByCardOrId.do

	Request for a payment through Apple Pay
	https://web.rbsuat.com/ab/applepay/payment.do

	Request for a recurring payment
	https://web.rbsuat.com/ab/recurrentPayment.do

	Request for a payment through Android Pay
	https://web.rbsuat.com/ab/android/payment.do

	Request for a payment through Samsung Pay
	https://web.rbsuat.com/ab/samsung/payment.do

[bookmark: scroll-bookmark-179][bookmark: _Toc256000008][bookmark: scroll-bookmark-10]Description of the interaction schemes
[bookmark: scroll-bookmark-172][bookmark: _Toc256000009][bookmark: scroll-bookmark-11]One-phase payment with specifying card data on the payment page
[bookmark: _Toc256000010][bookmark: scroll-bookmark-12]Scenario of a payment for an order
[image: /wiki/download/attachments/60300046/%D0%9E%D0%B4%D0%BD%D0%BE%D1%81%D1%82%D0%B0%D0%B4.%20%D0%92%D0%B2%D0%BE%D0%B4%20%D0%BA%D0%B0%D1%80%D1%82%D1%8B%20%D0%BD%D0%B0%20%D1%81%D1%82%D0%BE%D1%80%D0%BE%D0%BD%D0%B5%20%D1%88%D0%BB%D1%8E%D0%B7%D0%B0.png?version=1&modificationDate=1507575911000&api=v2]

One-phase scheme of a payment by a card:
1. A customer creates an order at the merchant resource and selects the bank card payment method.
2. After the bank card payment method has been selected, a request for the order registration must be sent to the payment gateway. To register the order such parameters as the amount to be debited, order number in the store system, as well as the customer return URL, are used. The request specification is presented in sections:
- 7.1.1 Order registration request" (SOAP) ,
- 7.2.1. Order registration request (REST) .
3. In the response to the registration request, the payment gateway returns a unique identifier of the order in the payment system (in the orderId parameter) and a URL to which the customer is to be redirected to get the payment form (in the formUrl parameter).
4. The store system must pass to the browser of the redirect URL received from the payment gateway in the formUrl parameter as a response to the order registration request.
5. The browser of the customer opens the received URL.
6. The customer gets the payment form.
7. The customer fills in the form and sends the data to the payment gateway server.
8. The order details are passed to the fraud control system to determine the probability of fraud. The result of applying the rule to the order is adding to the order a fraud probability coefficient (fraud-score). Each rule has its fraud score that represents a number from 0 to 100. (If the total fraud score of an order for all rules applied to the order exceeds 100, such an order is considered fraud and a payment for it will be declined.)
9. The result of the order fraud check is returned to the payment gateway.
If according to the store settings the payment is to be processed through SSL, the following step of the scenario is to be performed (10).
If according to the store settings the payment is must be 3D-Secure, the following actions will be done:
a. The payment gateway checks the card for enrolment to 3-D Secure.
If the authorization on ACS is not required for this card, the following step of the scenario is performed (10).
If the authorization on ACS is required, the following actions will be executed:

i. The gateway sends to the customer's browser the redirect URL to the ACS page of the issuing bank.
ii. The customer's browser requires from ACS the customer authorization form (each issuer implements this its own way)
iii. ACS sends to the customer's browser the authorization form.
iv. The customer fills in the authorization form and sends it to ACS.
v. ACS handles the filled in form and, regardless of the result, passes to the browser the redirect URL to the payment gateway pages. Along with the URL the encrypted parameters of the authorization result are passed.
vi. The customer's browser requires the payment gateway page passing the encrypted authorization result parameters. If the authorization has completed successfully, the next step of the scenario is executed.
10. The payment gateway processes the payment (debiting funds from the account of the customer)
11. After the payment has been processed, the payment gateway passes to the customer's browser the URL for returning to the store page (earlier specified by the store on registering the order, see step 2).
12. The customer's browser requires the payment result page from the store.
13. The store system requires the order payment status from the payment gateway (by the order unique identifier in the payment system that has been received on the order registration in theorderId parameter).
The specification of a typical order status request is present in sections:
- 7.1.4. Order status request (SOAP),
- 7.2.4. Order status request (REST).
The specification of an extended order status request is present in sections:
- "7.1..5 Extended order status request" (SOAP),
- 7.2.5. Extended order status request (REST).
14. The payment gateway returns the order payment status.
15. The store system passes to the customer's browser a page with the payment result – a successful payment or unsuccessful.

[bookmark: _Toc256000011][bookmark: scroll-bookmark-13]Cancellation of a payment for an order
Cancellation of a payment for an order is available to merchants provided that they have the corresponding permissions (upon agreement with the bank). On one-phase payments, cancellation of a payment is available for orders in the "Complete" / "Deposited" status.
Cancellation of a payment for an order is executed in the standard way:
· Through the administrative console (the description is provided in the document "Instruction on working with the console", the section "Working with orders");
· Using API, by means of the REST or SOAP interfaces. The request specification is presented in sections:
 - 7.1.6. Order payment cancellation request (SOAP),
 - 7.2.6. Order payment cancellation request (REST).

In case of a successful cancellation an order will be turned from the "Complete"/"Deposited" status to "Cancelled"/"Reversed".

[bookmark: _Toc256000012][bookmark: scroll-bookmark-14]Refund of a payment for an order
A full or partial refund for paid orders (in the "Complete"/"Deposited"status) is to be processed in the standard way:
· Through the administrative console (the description is provided in the document "Instruction on working with the console", the section "Working with orders");
· Using API, by means of the SOAP or REST interface. The request specification is presented in sections:
 - 7.1.7. Request for a refund of an order payment funds (SOAP),
 - 7.2.7. Request for a refund of an order payment funds (REST).
After a refund request sent in one of the above mentioned ways has been received in RBS, RBS returns the specified amount to the account of the customer.

[bookmark: _Toc256000013][bookmark: scroll-bookmark-15]Check for enrolment of a card to 3D-Secure
If necessary, the system allows a store to independently check a bank card for enrolment to 3-D Secure. This can be done using API, by means of the SOAP or REST interface. The request specification is present in sections:
 - 7.1.8. Request for checking a card for enrolment to 3D-Secure (SOAP),
 - 7.2.8. Request for checking a card for enrolment to 3D-Secure (REST).

[bookmark: _Toc256000014][bookmark: scroll-bookmark-16]Adding additional parameters to an order
In case of necessity, the system enables adding additional parameters to an order. This can be done using API, by means of the SOAP or REST interface. The request specification is present in sections:
 - 7.1.9. Request for adding additional parameters to an order (SOAP),
 - 7.2.9. Request for adding additional parameters to an order (REST).

[bookmark: _Toc256000015][bookmark: scroll-bookmark-17]Payment statistics for a certain period
The system allows you to form payment statistics for a certain period using API, by means of the SOAP or REST interface. The request specification is present in sections:
 - 7.1.10. Request for payment statistics for a period (SOAP),
 - 7.2.10. Request for payment statistics for a period (REST).

[bookmark: _Toc256000016][bookmark: scroll-bookmark-18]Adding a card to the list of SSL-cards
Upon agreement with the bank, a merchant can use the method for adding the number of a card that has been used on a payment attempt to the list of SSL-cards:
 - 7.1.18. Request for adding a card to the list of SSL-cards (SOAP),
 - 7.2.18. Request for adding a card to the list of SSL-cards (REST).
[bookmark: scroll-bookmark-173][bookmark: _Toc256000017][bookmark: scroll-bookmark-19]Two-phase payment with specifying card data on the payment page
[bookmark: _Toc256000018][bookmark: scroll-bookmark-20]Scenario of a payment for an order
[image: /wiki/download/attachments/60300046/%D0%94%D0%B2%D1%83%D1%85%D1%81%D1%82%D0%B0%D0%B4.%20%D0%92%D0%B2%D0%BE%D0%B4%20%D0%BA%D0%B0%D1%80%D1%82%D1%8B%20%D0%BD%D0%B0%20%D1%81%D1%82%D0%BE%D1%80%D0%BE%D0%BD%D0%B5%20%D1%88%D0%BB%D1%8E%D0%B7%D0%B0%20%28EN%29.png?version=2&modificationDate=1507576673055&api=v2]
Two-phase scheme for a payment by a card:
1. A customer creates an order at the merchant resource and selects the bank card payment method.
2. After the bank card method of payment has been selected, the order registration request with pre-authorization is to be sent to the payment gateway. To register the order such parameters as the amount to be debited, order number in the store system, as well as the customer return URL, are used. The request specification is presented in sections:
- 7.1.2. Request for registering an order with pre-authorization (SOAP) ,
- 7.2.2. Request for registering an order with pre-authorization (REST) .
3. In the response to the registration request, the payment gateway returns a unique identifier of the order in the payment system (in the orderId parameter) and a URL to which the customer is to be redirected to get the payment form (in the formUrl parameter).
4. The store system must pass to the browser of the redirect URL received from the payment gateway in the formUrl parameter as a response to the order registration request.
5. The browser of the customer opens the received URL.
6. The customer gets the payment form.
7. The customer fills in the form with the card details and sends the data to the payment gateway server.
8. The order details are passed to the fraud control system to determine the probability of fraud. The result of applying the rule to the order is adding to the order a fraud probability coefficient (fraud-score). Each rule has its fraud score that represents a number from 0 to 100. (If the total fraud score of an order for all rules applied to the order exceeds 100, such an order is considered fraud and a payment for it will be declined.)
9. The result of the order fraud check is returned to the payment gateway.
If according to the store settings the payment is to be processed through SSL, the following step of the scenario is to be performed (10).
If according to the store settings the payment is must be 3D-Secure, the following actions will be done:

a. The payment gateway performs a check by the card number to define whether the 3-D Secure technology is to be applies on processing the payment.
If authorization on ACS is not required for the given card, the next step of the scenario is to be executed (10).
If authorization on ACS is required, the following actions are to be done:

i. The gateway sends to the customer's browser the redirect URL to the ACS page of the issuing bank.
ii. The customer's browser requires from ACS the customer authorization form (each issuer implements this its own way)
iii. ACS sends to the customer's browser the authorization form.
iv. The customer fills in the form and sends it to ACS.
v. ACS handles the filled in form and, regardless of the result, passes to the browser the redirect URL to the payment gateway pages. Along with the URL the encrypted parameters of the authorization result are passed.
vi. The customer's browser requires the payment gateway page passing the encrypted authorization result parameters. If the authorization has completed successfully, the next step of the scenario is executed.
10. The payment gateway performs authorization of the payment (puts on hold funds on the card account of the customer).
11. After the payment has been processed, the payment gateway passes to the customer's browser the URL for returning to the store page (earlier specified by the store on registering the order, see step 2).
12. The customer's browser requires the payment result page from the store.
13. The store system requires the order payment status from the payment gateway (by the order unique identifier in the payment system that has been received on the order registration in theorderId parameter).
The specification of a typical order status request is present in sections:
- 7.1.4. Order status request (SOAP),
- "7.2.4 Order status request (REST).
The specification of an extended order status request is present in sections:
- 7.1.5. Extended order status request (SOAP),
- 7.2.5. Extended order status request (REST).
14. The payment gateway returns the order payment status.
15. The store system passes to the customer's browser a page with the payment result – a successful payment or unsuccessful.
16. To debit funds from the customer's account, the store needs to send to the payment gateway the order completion request. The request specification is present in sections:
 - 7.1.3 Order payment completion request (SOAP),
 - 7.2.3. Order payment completion request (REST).
17. The payment gateway returns the result of processing the request. The order status is not returned. To receive the order status, it is necessary to send to the gateway the corresponding request, as it is described in step 13.

[bookmark: _Toc256000019][bookmark: scroll-bookmark-21]Cancellation of a payment for an order
Cancellation of a payment for an order is available to merchants provided that they have the corresponding permissions (upon agreement with the bank). On two-phase payments, a payment cancellation can be processed for orders in the "Approved" status.
Cancellation of a payment for an order is executed in the standard way:
· Through the administrative console (the description is provided in the document "Instruction on working with the console", the section "Working with orders");
· Using API, by means of the REST or SOAP interfaces. The request specification is presented in sections:
 - 7.1.6. Order payment cancellation request (SOAP),
 - 7.2.6. Order payment cancellation request (REST).

In case of a successful operation of an order cancellation, the order will be turned from the "Approved" status to "Reversed".

[bookmark: _Toc256000020][bookmark: scroll-bookmark-22]Refund of a payment for an order
A full or partial refund for paid orders (orders in the "Deposited" status) is performed in the standard way:
· Through the administrative console (the description is provided in the document "Instruction on working with the console", the section "Working with orders");
· Using API, by means of the REST or SOAP interfaces. The request specification is presented in sections:
 - 7.1.7. Request for a refund of an order payment funds (SOAP),
 - 7.2.7. Request for a refund of an order payment funds (REST).
After a refund request sent in one of the above mentioned ways has been received in RBS, RBS returns the specified amount to the account of the customer.

[bookmark: _Toc256000021][bookmark: scroll-bookmark-23]Check for enrolment of a card to 3D-Secure
If necessary, the system allows a store to independently check a bank card for enrolment to 3-D Secure. This can be done using API, by means of the SOAP or REST interface. The request specification is present in sections:
 - 7.1.8. Request for checking a card for enrolment to 3D-Secure (SOAP),
 - 7.2.8. Request for checking a card for enrolment to 3D-Secure (REST).

[bookmark: _Toc256000022][bookmark: scroll-bookmark-24]Adding additional parameters to an order
In case of necessity, the system enables adding additional parameters to an order. This can be done using API, by means of the SOAP or REST interface. The request specification is present in sections:
 - 7.1.9. Request for adding additional parameters to an order (SOAP),
 - 7.2.9. Request for adding additional parameters to an order (REST).

[bookmark: _Toc256000023][bookmark: scroll-bookmark-25]Payment statistics for a certain period
The system allows you to form payment statistics for a certain period using API, by means of the SOAP or REST interface. The request specification is present in sections:
 - 7.1.10. Request for payment statistics for a period (SOAP),
 - 7.2.10. Request for payment statistics for a period (REST).

[bookmark: _Toc256000024][bookmark: scroll-bookmark-26]Adding a card to the list of SSL-cards
Upon agreement with the bank, a merchant can use the method for adding the number of a card that has been used on a payment attempt to the list of SSL-cards:
 - 7.1.18. Request for adding a card to the list of SSL-cards (SOAP),
 - 7.2.18. Request for adding a card to the list of SSL-cards (REST).

[bookmark: scroll-bookmark-174][bookmark: _Toc256000025][bookmark: scroll-bookmark-27]Payment with the aid of a binding on the payment page
[bookmark: _Toc256000026][bookmark: scroll-bookmark-28]General description of the autocompletetion functionality on the payment page
The given functionality is used to associate a card number with the customer ID in the store system (for example, with the login).
If after an authorization at the store site and a successful order payment a customer again places an order at that site, on redirecting to the payment page, he or she will be offered autocompletion of the card data, excluding CVC/ CVV.
If for a merchant it is planned to use the bindings functionality, the payment page can contain the form for selection of a binding to pay for an order. The form design must meet the following conditions:
· The form must have an identifier id="formBinding".
· By default the form must be hidden with the use of the CSS property "display: none;".
· The form must contain a drop-down list for the selection of a binding with binding names name="bindingId".
· The drop-down list must contain one option of choice: <option value="" selected="selected">other</option>, upon selection of which the customer makes a usual payment by a card, without using the binding functionality.
· The form must contain a field for entering СVC/CVV with the name name="cvc".
· The form must contain the "Pay" button: <input value="Оплатить" type="button" id="buttonBindingPayment"> with the id="buttonBindingPayment" identifier.
· The CVC/CVV entering field and the "Pay" button must be framed by elements with the class="rbs_hidden"class. On selecting an option of a payment without the binding functionality, these elements will be hidden by setting the CSS property "display: none;".
Form examples:
	<form action="" id="formBinding" style="display: none;">
 <table cellpadding="10">
 <tbody>
 <tr valign="TOP">
 <td valign="top" width="50%" align="right">
 Select card:
 </td>
 <td valign="top">
 <select name="bindingId">
 <option value="" selected="selected">other</option>
 </select>
 </td>
 </tr>
 <tr class="rbs_hidden">
 <td align="right">
 Введите CVC2/CVV2/CID код :
(on the back side of the card)
 </td>
 <td>
 <input name="cvc" maxlength="4" type="password" autocomplete="off" />
 </td>
 </tr>
 <tr class="rbs_hidden">
 <td> </td>
 <td valign="top" >
 <input value="Pay" type="button" id="buttonBindingPayment">
 </td>
 </tr>
 </tbody>
 </table>
 </form>

[bookmark: _Toc256000027][bookmark: scroll-bookmark-29]Scenario of a payment for an order
[image: /wiki/download/attachments/60300046/%D0%9E%D0%BF%D0%BB%D0%B0%D1%82%D0%B0%20%D1%81%D0%BE%20%D1%81%D0%B2%D1%8F%D0%B7%D0%BA%D0%BE%D0%B9%20%D0%BD%D0%B0%20%D0%BF%D0%BB.%D1%81%D1%82%D1%80.%20%28EN%29.png?version=1&modificationDate=1507577113524&api=v2]

1. A customer creates an order at the merchant resource and selects the bank card payment method.
2. After the bank card payment method has been selected, an order registration request is to be sent to the payment gateway with a unique identifier of the customer mandatorily passed in the clientId parameter. For the order registration also such parameters are used as the amount to be debited, order number in the store system, the customer return URL. The request specification is presented in sections:
- 7.1.1 Order registration request (SOAP),
- 7.2.1. Order registration request (REST) .
3. In a response to the order registration, the payment gateway returns a unique identifier on the order in the payment system (in the orderId parameter) and the URL, to which the customer is to be redirected to get a payment form (in the formUrl response parameter).
4. The store system must pass to the browser of the redirect URL received from the payment gateway in the formUrl parameter as a response to the order registration request.
5. The browser of the customer opens the received URL.

6. The customer gets the payment form.

7. If for the given clientId a binding has not been created yet, the customer fills in the received form with the card details and checks the "Remember this card data" box. After that, the customer sends the data to the payment gateway server.

If for a given clientId one or several associated cards exist, they are displayed in the drop-down list of the PAN field. The customer selects the necessary card (there is also a possibility to enter the data of a new card). After that, the customer sends the data to the payment gateway server.
8. The order details are passed to the fraud control system to determine the probability of fraud. The result of applying the rule to the order is adding to the order a fraud probability coefficient (fraud-score). Each rule has its fraud score that represents a number from 0 to 100. (If the total fraud score of an order for all rules applied to the order exceeds 100, such an order is considered fraud and a payment for it will be declined.)
9. The result of the order fraud check is returned to the payment gateway.
If the store settings require processing an SSL-payment, the next step of the scenario is to be executed (10).
If a payment according to the store settings must be 3D-Secure, the following actions will be performed:

a. Having received the payment details, the payment gateway checks by the card number whether it is necessary to use the 3-D Secure technology on processing the payment.
If using the 3-D Secure technology is not required, the next step of the scenario is to be executed (10).
If the payment must be 3-D Secure, the following actions will be performed:

i. The gateway sends to the customer's browser the redirect URL to the ACS page of the issuing bank.
ii. The customer's browser requires from ACS the customer authorization form (each issuer implements this its own way)
iii. ACS sends to the customer's browser the authorization form.
iv. The customer fills in the authorization form and sends it to ACS.
v. ACS handles the filled in form and, regardless of the result, passes to the browser the redirect URL to the payment gateway pages. Along with the URL the encrypted parameters of the authorization result are passed.
vi. The customer's browser requires the payment gateway page passing the encrypted authorization result parameters. If the authorization has completed successfully, the next step of the scenario is executed.
10. The payment gateway processes the payment (debiting funds from the account of the customer)

11. After the payment has been processed, the payment gateway passes to the customer's browser the URL for returning to the store page (earlier specified by the store on registering the order, see step 2).
12. The customer's browser requires the payment result page from the store.
13. The store system requires the order payment status from the payment gateway (by the order unique identifier in the payment system that has been received on the order registration in theorderId parameter).
The specification of a typical order status request is present in sections:
- 7.1.4. Order status request (SOAP),
- 7.2.4. Order status request (REST).
The specification of an extended order status request is present in sections:
- 7.1.5. Extended order status request (SOAP),
- 7.2.5. Extended order status request (REST).
14. The payment gateway returns the order payment status.
15. The store system passes to the customer's browser a page with the payment result – a successful payment or unsuccessful.

[bookmark: _Toc256000028][bookmark: scroll-bookmark-30]Getting the bindings list of a customer
If at step 5 of the scenario the customer has entered the details of a new card on the payment page and checked the "Remember this card data" box, in case of a successful payment, a unique identifier of the binding in created on the payment gateway side. A store can get the list of identifiers of the existing binding for a certain clientId by sending the corresponding request to the payment gateway. The request specification is presented in sections:
- 7.1.16. Request for the list of bindings of a customer (SOAP)
- 7.2.16. Request for the list of bindings of a customer (REST)

[bookmark: _Toc256000029][bookmark: scroll-bookmark-31]Getting the bindings list of a bank card
Provided that a store has the corresponding permissions, it can get the list of all bindings that relate to a certain bank card. This can be done by a card number or by a known binding identifier. The specification of the request is present in sections:
 - 7.1.17. Request for the list of bindings of a bank card (SOAP),
 - 7.2.17. Request for the list of bindings of a bank card (REST).

[bookmark: _Toc256000030][bookmark: scroll-bookmark-32]Deactivating/activating an existing binding
If necessary, the system allows stores to deactivate existing bindings with the use of API, by means of the SOAP or REST interface. The request specification is present in sections:
 - 7.1.13. Request for deactivation of a binding (SOAP),
 - 7.2.13. Request for deactivation of a binding (REST).
Further a deactivated binding can be activated again. To do so, a store needs to send to the payment gateway the corresponding request. The request specification is present in sections:
 - 7.1.14. Request for activation of a binding (SOAP),
 - 7.2.14. Request for activation of a binding (REST) .

[bookmark: _Toc256000031][bookmark: scroll-bookmark-33]Changing the validity period of a binding
Changing the validity period of a binding may be required in the case of re-issuing a customer's card. It can be done with the use of API, by means of the SOAP or REST interface. The request specification is present in sections:
 - 7.1.15. Request for changing the validity period of a binding (SOAP),
 - 7.2.15. Request for changing the validity period of a binding (REST).

[bookmark: _Toc256000032][bookmark: scroll-bookmark-34]Adding a card to the list of SSL-cards
Upon agreement with the bank, a store can use the method for adding a card that has been debited (or ought to be debited) to the list of SSL-cards:
 - 7.1.18. Request for adding a card to the list of SSL-cards (SOAP),
 - 7.2.18. Request for adding a card to the list of SSL-cards (REST).

[bookmark: scroll-bookmark-175][bookmark: _Toc256000033][bookmark: scroll-bookmark-35]One-phase auto-payments
[bookmark: _Toc256000034][bookmark: scroll-bookmark-36]Scenario of executing an initial payment
[image: /wiki/download/attachments/60300046/%D0%9E%D0%B4%D0%BD%D0%BE%D1%81%D1%82%D0%B0%D0%B4.%20%D0%B0%D0%B2%D1%82%D0%BE%D0%BF%D0%BB%D0%B0%D1%82%D1%91%D0%B6%20%D0%BF%D0%B5%D1%80%D0%B2%D0%BE%D0%BD%D0%B0%D1%87%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B9%20%28EN%29.png?version=2&modificationDate=1507578429436&api=v2]
1. The customer creates an order on the store resource and selects the bank card payment method.
2. After the bank card payment method has been selected, an order registration request is to be sent to the payment gateway with a unique identifier of the customer mandatorily passed in the clientId parameter. For the order registration also such parameters are used as the amount to be debited, order number in the store system, the customer return URL. The request specification is presented in sections:
- 7.1.1 Order registration request (SOAP),
- 7.2.1. Order registration request (REST) .
3. In a response to the order registration, the payment gateway returns a unique identifier on the order in the payment system (in the orderId parameter) and the URL, to which the customer is to be redirected to get a payment form (in the formUrl response parameter).
4. The store system must pass to the browser of the redirect URL received from the payment gateway in the formUrl parameter as a response to the order registration request.
5. The browser of the customer opens the received URL.
6. The customer gets the payment form.
7. The customer fills in the received form with the card details and sends the data to the payment gateway server.
8. The order details are passed to the fraud control system to determine the probability of fraud. The result of applying the rule to the order is adding to the order a fraud probability coefficient (fraud-score). Each rule has its fraud score that represents a number from 0 to 100. (If the total fraud score of an order for all rules applied to the order exceeds 100, such an order is considered fraud and a payment for it will be declined.)
9. The result of the order fraud check is returned to the payment gateway.
10. The payment gateway checks the card for enrolment to 3-D Secure.
If authorization on ACS is not required, the next step of the scenario is to be executed (11).
If the authorization on ACS is required, the following actions will be executed:
a.
i. The gateway sends to the customer's browser the redirect URL to the ACS page of the issuing bank.
ii. The customer's browser requires the user authorization form from ACS (each issuing bank implements this in its own way).
iii. ACS sends to the customer's browser the authorization form.
iv. The customer fills in the authorization form and sends it to ACS.
v. ACS handles the filled in form and, regardless of the result, passes to the browser the redirect URL to the payment gateway pages. Along with the URL the encrypted parameters of the authorization result are passed.
vi. The customer's browser requires the payment gateway page passing the encrypted authorization result parameters. If the authorization has completed successfully, the next step of the scenario is executed.
11. The payment gateway processes the payment (debiting funds from the customer's account).
12. In case of a successful payment, a binding is to be created in the payment gateway (the details of the card that has been used for the payment are associated with the customer identifier passed at step 2 in the clientId parameter).
13. After the payment has been processed, the payment gateway passes to the customer's browser the URL for returning to the store page (earlier specified by the store on registering the order, see step 2).
14. The customer's browser requires the payment result page from the store.
15. The store system requests the status of an order from the payment gateway (by the order unique identifier in the store system that has been received at step 3 in the orderId parameter).
The specification of a typical order status request is present in sections:
- 7.1.4. Order status request (SOAP),
- 7.2.4. Order status request (REST).
The specification of an extended order status request is present in sections:
- 7.1.5. Extended order status request (SOAP),
- 7.2.5. Extended order status request (REST).
16. The payment gateway returns the order payment status (in the orderStatus parameter) along with the unique identifier of the binding (in the bindingId parameter).
17. The store system passes to the customer's browser the page with the payment result: whether the payment is successful or not.

After the initial payment has been successfully processed, the store on its side enable the "Auto-payment" service for the customer (defines the date and amount of debiting for the given customer). Further the store independently tracks the date of a subsequent payment and initiates a payment by the binding identifier.

[bookmark: _Toc256000035][bookmark: scroll-bookmark-37]Scenario of executing an auto-payment
On the date of a subsequent payment, the store initiates a payment according to the following scenario:
1. An order registration request that mandatory passes the unique identifier in the clientId parameter must be sent to the payment gateway. For the order registration also such parameters are used as the amount to be debited, order number in the store system, the customer return URL. The request specification is presented in sections:
- 7.1.1 Order registration request (SOAP),
- 7.2.1. Order registration request (REST) .
2. In the response to the request, the payment gateway returns the unique identifier of the order in the payment system (as orderId).
3. The store sends the order payment request with the use of a binding, passing the number of the order in the payment system received at the previous step and the binding identifier received after the initial payment has been processed. The request specification is presented in sections:
- 7.1.12 Request for processing an order by a binding" (SOAP),
- 7.2.12 Request for processing an order by a binding (REST).
4. The payment gateway processes the payment (debiting funds from the customer's account).
5. The store system requests from the payment gateway the order status (by the unique identifier of the order in the payment system that was received at step 2 as orderId).
The specification of a typical order status request is present in sections:
- 7.1.4. Order status request (SOAP),
- 7.2.4. Order status request (REST).
The specification of an extended order status request is present in sections:
- 7.1.5. Extended order status request (SOAP),
- 7.2.5. Extended order status request (REST).
6. The payment gateway returns the payment status (in the orderStatus parameter).

[bookmark: _Toc256000036][bookmark: scroll-bookmark-38]Getting the bindings list of a customer
The store can get the list of identifiers of existing bindings for a certain clientId by sending the corresponding request to the payment gateway. The request specification is presented in sections:
- 7.1.16. Request for the list of bindings of a customer (SOAP)
- 7.2.16. Request for the list of bindings of a customer (REST)

[bookmark: _Toc256000037][bookmark: scroll-bookmark-39]Deactivating/activating an existing binding
If necessary, the system allows stores to deactivate existing bindings with the use of API, by means of the SOAP or REST interface. The request specification is present in sections:
 - 7.1.13. Request for deactivation of a binding (SOAP),
 - 7.2.13. Request for deactivation of a binding (REST).
Further a deactivated binding can be activated again. To do so, a store needs to send to the payment gateway the corresponding request. The request specification is present in sections:
 - 7.1.14. Request for activation of a binding (SOAP),
 - 7.2.14. Request for activation of a binding (REST) .

[bookmark: _Toc256000038][bookmark: scroll-bookmark-40]Changing the validity period of a binding
Changing the validity period of a binding may be required in the case of re-issuing a customer's card. It can be done with the use of API, by means of the SOAP or REST interface. The request specification is present in sections:
 - 7.1.15. Request for changing the validity period of a binding (SOAP),
 - 7.2.15. Request for changing the validity period of a binding (REST).

[bookmark: _Toc256000039][bookmark: scroll-bookmark-41]Adding a card to the list of SSL-cards
Upon agreement with the bank, a merchant can use the method for adding the number of a card that has been used on a payment attempt to the list of SSL-cards:
 - 7.1.18. Request for adding a card to the list of SSL-cards (SOAP),
 - 7.2.18. Request for adding a card to the list of SSL-cards (REST).
[bookmark: scroll-bookmark-176][bookmark: _Toc256000040][bookmark: scroll-bookmark-42]Two-phase auto-payments
[bookmark: _Toc256000041][bookmark: scroll-bookmark-43]Scenario of executing an initial payment
[image: /wiki/download/attachments/60300046/%D0%94%D0%B2%D1%83%D1%85%D1%81%D1%82%D0%B0%D0%B4.%20%D0%B0%D0%B2%D1%82%D0%BE%D0%BF%D0%BB%D0%B0%D1%82%D1%91%D0%B6%20%D0%BF%D0%B5%D1%80%D0%B2%D0%BE%D0%BD%D0%B0%D1%87%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B9%20%28EN%29.png?version=1&modificationDate=1507578831405&api=v2]

1. A customer creates an order at the merchant resource and selects the bank card payment method.
2. After the bank card payment method has been selected, a request for a preliminary order registration must be sent to the payment gateway. The requests must mandatory pass the unique identifier of the customer in the clientId parameter. For the order registration also such parameters are used as the amount to be debited, order number in the store system, the customer return URL. The request specification is presented in sections:
- 7.1.2. Request for registering an order with pre-authorization (SOAP) ,
- 7.2.2. Request for registering an order with pre-authorization (REST) .
3. In a response to the order registration, the payment gateway returns a unique identifier on the order in the payment system (in the orderId parameter) and the URL, to which the customer is to be redirected to get a payment form (in the formUrl response parameter).
4. The store system must pass to the browser of the redirect URL received from the payment gateway in the formUrl parameter as a response to the order registration request.
5. The customer's browser opens the URL.
6. The customer receives the payment form.
7. The customer fills in the form with the card details and sends the data to the payment gateway server.
8. The order details are passed to the fraud control system to determine the probability of fraud. The result of applying the rule to the order is adding to the order a fraud probability coefficient (fraud-score). Each rule has its fraud score that represents a number from 0 to 100. (If the total fraud score of an order for all rules applied to the order exceeds 100, such an order is considered fraud and a payment for it will be declined.)
9. The result of the order fraud check is returned to the payment gateway.
10. Having received the payment details, the payment gateway checks the card for enrolment to 3-D Secure.
If authorization on ACS is not required, the next step of the scenario is to be executed (11).
If authorization on ACS is required, the following actions will take place:
a.
i. The gateway sends to the customer's browser the redirect URL to the ACS page of the issuing bank.
ii. The customer's browser requires from ACS the customer authorization form (each issuer implements this its own way)
iii. ACS sends to the customer's browser the authorization form.
iv. The customer fills in the authorization form and sends it to ACS.
v. ACS handles the filled in form and, regardless of the result, passes to the browser the redirect URL to the payment gateway pages. Along with the URL the encrypted parameters of the authorization result are passed.
vi. The customer's browser requires the payment gateway page passing the encrypted authorization result parameters. If the authorization has completed successfully, the next step of the scenario is executed.
11. The payment gateway processes the payment (puts on hold funds on the customer's card account).
12. In case of a successful putting on hold the amount on the card, a binding will be created (the details of the card that has been used for the payment will be associated with the customer identifier passes at step 2 as clientId).

13. After the payment has been processed, the payment gateway passes to the customer's browser the URL for returning to the store page (earlier specified by the store on registering the order, see step 2).
14. The customer's browser requires the payment result page from the store.
15. The store system requests the status of an order from the payment gateway (by the order unique identifier in the store system that has been received at step 3 in the orderId parameter).
The specification of a typical order status request is present in sections:
- 7.1.4. Order status request (SOAP),
- 7.2.4. Order status request (REST).
The specification of an extended order status request is present in sections:
- 7.1.5. Extended order status request (SOAP),
- 7.2.5. Extended order status request (REST).
16. The payment gateway returns the order payment status (in the orderStatus parameter) along with the unique identifier of the binding (in the bindingId parameter).
17. The store system passes to the customer's browser a page with the payment result – a successful payment or unsuccessful.
18. For the amount put on hold to be debited from the customer's account, the store needs to send to the payment gateway the payment completion request. The request specification is present in sections:
 - 7.1.3 Order payment completion request (SOAP),
 - 7.2.3. Order payment completion request (REST).
19. The payment gateway returns the result of processing the request. The order status is not returned. To receive the order status, it is necessary to send to the payment gateway the corresponding request, as it is described in step 15.

After the initial payment has been successfully processed, the store on its side enable the "Auto-payment" service for the customer (defines the date and amount of debiting for the given customer). Further the store independently tracks the date of a subsequent payment and initiates a payment by the binding identifier.

[bookmark: _Toc256000042][bookmark: scroll-bookmark-44]Scenario of executing an auto-payment
On the date of a subsequent payment, the store initiates a payment according to the following scenario:
1. An order preliminary registration request that mandatory passes the unique identifier of the customer in the clientId parameter must be sent to the payment gateway For the order registration also such parameters are used as the amount to be debited, order number in the store system, the customer return URL. The request specification is presented in sections:
- 7.1.2. Request for registering an order with pre-authorization (SOAP) ,
- 7.2.2. Request for registering an order with pre-authorization (REST) .
2. In the response to the request, the payment gateway returns the unique identifier of the order in the payment system (as orderId).
3. The store sends the order payment request with the use of a binding, passing the number of the order in the payment system received at the previous step and the binding identifier received after the initial payment has been processed. The request specification is presented in sections:
- 7.1.12 Request for processing an order by a binding" (SOAP),
- 7.2.12 Request for processing an order by a binding (REST).
4. The payment gateway processes the payment (puts on hold funds of the customer's card account) and returns the result of the payment processing. The order status is not returned. To receive the order status, it is necessary to send to the payment gateway the corresponding request.
The specification of a typical order status request is present in sections:
- 7.1.4. Order status request (SOAP),
- 7.2.4. Order status request (REST).
The specification of an extended order status request is present in sections:
- 7.1.5. Extended order status request (SOAP),
- 7.2.5. Extended order status request (REST).
5. The payment gateway returns the order status (in orderStatus).
6. To debit funds from the customer's account, the store needs to send to the payment gateway the order completion request. The request specification is present in sections:
 - 7.1.3 Order payment completion request (SOAP),
 - 7.2.3. Order payment completion request (REST).
7. The payment gateway returns the result of processing the request. The order status is not returned. To receive the order status, it is necessary to send to the payment gateway the corresponding request, as it is described in step 4.

[bookmark: _Toc256000043][bookmark: scroll-bookmark-45]Getting the bindings list of a customer
The store can get the list of identifiers of existing bindings for a certain clientId by sending the corresponding request to the payment gateway. The request specification is presented in sections:
- 7.1.16. Request for the list of bindings of a customer (SOAP)
- 7.2.16. Request for the list of bindings of a customer (REST)

[bookmark: _Toc256000044][bookmark: scroll-bookmark-46]Deactivating/activating an existing binding
If necessary, the system allows stores to deactivate existing bindings with the use of API, by means of the SOAP or REST interface. The request specification is present in sections:
 - 7.1.13. Request for deactivation of a binding (SOAP),
 - 7.2.13. Request for deactivation of a binding (REST).
Further a deactivated binding can be activated again. To do so, a store needs to send to the payment gateway the corresponding request. The request specification is present in sections:
 - 7.1.14. Request for activation of a binding (SOAP),
 - 7.2.14. Request for activation of a binding (REST) .

[bookmark: _Toc256000045][bookmark: scroll-bookmark-47]Changing the validity period of a binding
Changing the validity period of a binding may be required in the case of re-issuing a customer's card. It can be done with the use of API, by means of the SOAP or REST interface. The request specification is present in sections:
 - 7.1.15. Request for changing the validity period of a binding (SOAP),
 - 7.2.15. Request for changing the validity period of a binding (REST).

[bookmark: _Toc256000046][bookmark: scroll-bookmark-48]Adding a card to the list of SSL-cards
Upon agreement with the bank, a merchant can use the method for adding the number of a card that has been used on a payment attempt to the list of SSL-cards:
 - 7.1.18. Request for adding a card to the list of SSL-cards (SOAP),
 - 7.2.18. Request for adding a card to the list of SSL-cards (REST).

[bookmark: scroll-bookmark-177][bookmark: _Toc256000047][bookmark: scroll-bookmark-49]Using "Alfa-click" to pay for an order

[bookmark: _Toc256000048][bookmark: scroll-bookmark-50]Short description of the PayByClick system
The PayByClick system is one more means of payment of the payment gateway along with bank card payments. Meanwhile, the interaction scheme between the store and payment gateway does not change.
Payments through PayByClick are dedicated to customers of "Alfa-click".

The integration scheme depends on the way in which the "Alfa-click" means of payment is used:
1. The merchant accepts payments through "Alfa-click" along with using e-commerce. In this case, the button to switch to the PayByClick system is located on the payment page to which the customer is redirected to pay an order. The description of the process is present in section 4.6.2.1. Using "Alfa-click" and e-commerce.
2. The merchant accepts payments processed only through "Alfa-click". In this case, the request of a payment through "Alfa-click" is created to redirect the customer to the PayByClick system. The description of the process is present in section 4.6.2.2. Using solely "Alfa-click".

The PayByClick system does not provides for a partial debiting of a pre-authorized order (on a two-phase payment), for a partial payment, and partial or full refund (reversal or refund). Payments are available only in roubles. There is no possibility to locate the payment data entering page on the side of a store.
The existing e-invoicing payment registers are used for reconciliation.

[bookmark: _Toc256000049][bookmark: scroll-bookmark-51]Scenario of a payment for an order
[bookmark: scroll-bookmark-214][bookmark: scroll-bookmark-52]Using "Alfa-click" and e-commerce
If a store uses "Alfa-click" along with e-commerce, on creating the payment page, besides the standard requirements described in the "Payment page design" document, a requirement to locate on the page the following button is added:
	<input type="button" class="alfaclick" id="buttonPaymentAlfa" value="Pay through Alfa-click" />"

Also it is possible for a store to download the standard payment page that already has a button for switching to a payment through Alfa-click.

Below the general process of paying through PayByClick is described (without taking into account negative scenarios):
[image: /wiki/download/attachments/60300046/Alfaclick%20and%20ecommerce.png?version=1&modificationDate=1507579250305&api=v2]

1. The customer creates an order at the site of the store.
2. After the order has been confirmed by the customer, the store registers the order in RBS. To register the order such parameters as the amount to be debited, order number in the store system, as well as the customer return URL, are used. The request specification is presented in sections:
- 7.1.1 Order registration request" (SOAP) ,
- 7.2.1. Order registration request" (REST).
3. RBS returns the order ID and the URL to redirect the customer to the payment form. In case of implementing the payment method selection on the side of the payment page, steps 4-6 are to be executed. In case of a selection of the payment method on the side of the store, at this step, the URL is passed to continue at step 7.
4. The store sends to the customer the redirect URL received at step 3.
5. The customer opens the received URL proceeding to the payment form.
6. The payment method selection form is displayed to the customer. On selecting "Pay through Alfa-click", the customer is redirected to PayByClick.
7. The customer's browser requests the authorization form with parameters:
· Order ID (received at step 3);
· The BackURL to return to the order status request page (that has been passed in the registration request at step 2).
8. PayByClick requests the order data by its ID.
9. RBS returns the order data.
10-13. The operations of authenticating the "Alfa-click" customer and authorizing a payment through "Alfa-click" .
14. PayByClick passed to the customer the RBS redirect URL received at step 7 and completes the operation. The payment status is not passed, only the order ID is passed.
15. The customer's browser opens the received BackURL of the payment status request page.
16. The order payment status is checked on the page.
17. After the order status gets the necessary value (DEPOSITED), the customer is redirected to the store page where the order status is displayed.
18. The customer gets the payment status page.

[bookmark: scroll-bookmark-215][bookmark: scroll-bookmark-53]Using solely "Alfa-click"
Below the general process of a payment through the PayByClick system is described (without negative scenarios) for the case when the store accepts payments only through PayByClick:

[image: /wiki/download/attachments/60300046/Alfaclick%20only%20%28EN%29.png?version=1&modificationDate=1507579562896&api=v2]

1. The customer creates an order at the site of the store.
2. After the order has been confirmed by the customer, the store registers the order in RBS. To register the order such parameters as the amount to be debited, order number in the store system, as well as the customer return URL, are used. The request specification is presented in sections:
- 7.1.1 Order registration request (SOAP),
- 7.2.1. Order registration request (REST) .
3. RBS returns the order ID.
4. The store sends to RBS the request for paying the order through "Alfa-click" passing the order ID received at step 3. To do so, the request for an alternative payment method is used with a mandatory ALFA_ALFACLICK value in the paymentWay parameter as well as with the order ID. The request specification is presented in sections:
- 7.1.11. Request for a payment through an external payment system (SOAP),
- "7.2.11. Request for a payment through an external payment system" (REST).
5. In the response, the payment gateway sends the URL to redirect the customer to the PayByClick system.
6. The redirect link to the PayByClick system is passed to the customer's browser.
7. The customer's browser requests the authorization form with parameters:
· Order ID (received at step 3);
· The BackURL to return to the order status request page (that has been passed in the registration request at step 2).
8. PayByClick requests the order data by its ID.
9. RBS returns the order data.
10-13. The operations of authenticating the "Alfa-click" customer and authorizing a payment through "Alfa-click" .
14. PayByClick passed to the customer the RBS redirect URL received at step 7 and completes the operation. The payment status is not passed, only the order ID is passed.
15. The customer's browser opens the received BackURL of the payment status request page.
16. The order payment status is checked on the page.
17. After the order status gets the necessary value (DEPOSITED), the customer is redirected to the store page where the order status is displayed.
18. The customer gets the payment status page.

[bookmark: _Toc256000050][bookmark: scroll-bookmark-54]Testing a payment through "Alfa-click"
1. Register an order in the payment gateway. The registration can be done with REST/SOAP.

2. Redirecting to the PayByClick system takes place:
· After the "Pay through Alfa-click" button has been pressed on the payment page, if the customer has been redirected there after registering the order,
· After the request for confirmation of a payment through "Alfa-click" (REST / SOAP) has been sent.

3. The page for a payment through "Alfa-click" will open at the following address http://217.12.96.193/PayByClick/login.xhtml?faces-redirect=true:
[image:]

4. Enter the login and password for "Alfa-click" and click "Next". Test credentials:
· "Alfa-click" login: 6819507
· "Alfa-click" password: 000000

5. The "Authorization" page will open:
[image:]

6. Enter a one-time password and click "Next". The test one-time password: 0000.

7. The page of selection of an account to be debited will open:
[image:]

8. Select an account to be debited from the drop-down list and click "Pay". Redirection to the store page specified on the registration will occur.

9. After that, the payment is considered to be formally complete. Upon returning to the store site after the payment in the "Alfa-click" system has been processed, the payment status is not passed. Because of that, to clarify the payment status, the store needs to request RBS using the standard order status request (getOrderStatus) and to wait for the order to turn to the DEPOSITED status (funds are debited).

[bookmark: _Toc256000051][bookmark: scroll-bookmark-55]Using UPOP to pay for an order
The most recent information from UPOP are here [image:]
[bookmark: _Toc256000052][bookmark: scroll-bookmark-56]Short description of the CUP system
The UPOP tool is the payment means of the payment gateway that enables processing payments through China UnionPay (CUP). Meanwhile, the interaction scheme between the store and payment gateway does not change.
Payments using UPOP are available for holders of China Union Pay cards.

The integration scheme depends on the way in which the UPOP payment tool is used.
· A merchant accepts UPOP payments along with the use of e-commerce. In this case the button for switching to the CUP system is located on the payment page to which the customer is redirected to pay for the order. The description of the payment process is present in section 4.7.2.1. Using UPOP and e-commerce.
· The merchant accepts only payments through UPOP. In this case, to redirect the customer to the CUP system, the request for a payment through UPOP is created. The description of the payment process is present in section 4.7.2.2. Using solely UPOP.

The CUP system does not supports two-phase payments.

[bookmark: _Toc256000053][bookmark: scroll-bookmark-57]Scenario of a payment for an order
[bookmark: scroll-bookmark-218][bookmark: scroll-bookmark-58]Using UPOP and e-commerce
If a store uses "UPOP" along with e-commerce, on creating the payment page, besides the standard requirement described in the "Designing the payment page" document, a requirement to locate on the page the button element is added:
	<input type="button" class="alfaclick" id="buttonPaymentUpop" value="Pay through UPOP" />"

Upon pressing the button the request for processing a payment through UPOP is executed. The description of the request is present in sections:
- 7.1.11. Request for a payment through an external payment system (SOAP),
- 7.2.11. Request for a payment through an external payment system (REST).

Also there is a possibility to download for a store the standard payment page that already contains the button for switching to UPOP.

Below the general process of paying through the CUP system is described (without taking into account negative scenarios):
[image: /wiki/download/attachments/60300046/UPOP%20and%20ecommerce%20%28EN%29.png?version=1&modificationDate=1507638757793&api=v2]

1. The customer creates an order and confirms it;
2. After the order has been confirmed by the customer, the store registers the order in RBS. To register an order, such parameters are used as the amount to be debited, order number in the store system (an alfa-numeric value from 8 to 32 symbols in length), as well as the customer redirect URL. The request specification is presented in sections:
- 7.1.1 Order registration request" (SOAP), (in case of paying through UPOP, the order number in the store system must be an alfa-numeric value from 8 to 32 symbols in length);
- 7.2.1. Order registration request" (REST), (in case of paying through UPOP, the order number in the store system must be an alfa-numeric value from 8 to 32 symbols in length).
3. RBS returns the order ID and the URL to redirect the customer to the payment form.
4. The store sends to the customer the redirect URL received at step 3.
5. The customer opens the received URL proceeding to the payment form.
6. The customer is redirected to the payment page that belongs to the bank. On the payment page, the available method of payments through UPOP is displayed (the "Pay through UPOP" button).
7. The customer selects a payment through UPOP (presses the button).
8. The RBS system requests the order payment in the UPOP payment gateway.
9. The UPOP system requests from the customer the payment data.
10. The customer sends his or her data.
11. The UPOP system processes the payment.
12-13. The customer is redirected to the page with the payment result.
14. The RBS system calls the UPOP system to the check the payment status.
15. The UPOP system checks the result of the payment and returns it to the RBS system.
16. The order status in the RBS system is renewed.
17. The result is displayed to the customer.

[bookmark: scroll-bookmark-219][bookmark: scroll-bookmark-59]Using solely UPOP
Below the general process of paying through the CUP system (without negative scenarios) for the case when the store accepts only payments through CUP:

[image: /wiki/download/attachments/60300046/UPOP%20only.png?version=1&modificationDate=1507639282987&api=v2]

1. The customer creates an order at the site of the store.
2. After the order has been confirmed by the customer, the store registers the order in RBS. To register an order, such parameters are used as the amount to be debited, order number in the store system (an alfa-numeric value from 8 to 32 symbols in length), as well as the customer redirect URL. The request specification is presented in sections:
- 7.1.1 Order registration request" (SOAP), (in case of paying through UPOP, the order number in the store system must be an alfa-numeric value from 8 to 32 symbols in length);
- 7.2.1. Order registration request" (REST), (in case of paying through UPOP, the order number in the store system must be an alfa-numeric value from 8 to 32 symbols in length).
3. RBS returns the order ID.
4. The store sends to RBS the request for an order payment through UPOP passing the order ID received at step 3. To do this, the request for an alternative payment method is used with the UPOP value mandatorily passed in the paymentWay parameter, as well as the order ID. The request specification is presented in sections:
- 7.1.11. Request for a payment through an external payment system (SOAP),
- 7.2.11. Request for a payment through an external payment system (REST).
5. In the response, the payment gateway sends the URL to redirect the customer to the CUP system.
6. The redirect URL to the CUP system is passed to the customer's browser.
7. The customer's browser requests the authorization form with parameters:
· Order ID (received at step 3);
· The BackURL to return to the order status request page (that has been passed in the registration request at step 2).
8. The customer receives the form for authorization in the CUP system.
9. The customer fills in and sends the form to CUP.
10. The UPOP system processes the payment.
11-12. The customer is redirected to the page with the payment result.
13. The RBS system calls the UPOP system to the check the payment status.
14. The UPOP system checks the result of the payment and returns it to the RBS system.
15. The order status is renewed in the RBS system.
16. The result is displayed to the customer.

[bookmark: _Toc256000054][bookmark: scroll-bookmark-60]Testing a payment through UPOP
[bookmark: scroll-bookmark-61]Testing process
To test processing a payment through UPOP:
1. Register an order in the payment gateway. The order registration can be performed using REST / SOAP (the order number in the store system must be an alfa-numeric value from 8 to 32 symbols in length).

2. Redirecting to the CUP system occurs:
·
· After the "Pay through UPOP" button on the payment page has been pressed, if the customer was redirected to it after registering an order.
· After sending the request for a payment through UPOP (REST / SOAP).

3. The page of authorization in the CUP system will open at the address http://202.101.25.184/beta/index.action?transNumber=201311062352028710592:
[image:]

4. Enter the card number and click "Next". The test card credentials are present in the next section.

5. The confirmation page will open:
[image:]

6. Enter the PIN-code and the confirmation SMS-code.

7. Click "Confirm and Pay". The page with the payment result will open:
[image:]
Upon pressing the Return Merchant button redirection takes place back to the store page that was specified on the order registration in the returnUrl parameter (if the registration was performed by REST/ SOAP) or in the return address parameter (on the registration through the form).

8. After that, the payment is considered to be formally complete. On returning to the store site after a payment in the CUP system, the payment status is not passed. Because of this, the store needs to request the RBS system by the standard order status request (getOrderStatus) and to wait till the order status turns to DEPOSITED (the funds are debited).

[bookmark: scroll-bookmark-220][bookmark: scroll-bookmark-62]Test China UnionPay cards

The cards that are present in the section are designed only to test processing payments through UPOP:

Debit cards:
	Card number
	6222 9888 1234 0000

	Mobile phone number
	13552535506

	PIN
	123456

	SMS Code on PC
	111111

	SMS Code on Mobile
	123456

	Card number
	6216261000000000018

	Mobile phone number
	13552535506

	PIN
	123456

	SMS Code on PC
	111111

	SMS Code on Mobile
	123456

	Card number
	6222988812340000

	Mobile phone number
	13552535506

	PIN
	123456

	Name
	互联网

	Personal ID
	341126197709218366

	OTP
	111111

	Card number
	6221558812340000

	Mobile phone number
	13552535506

	cvn2
	123

	Name
	互联网

	Personal ID
	341126197709218366

	Expiry Date
	1711

	OPT
	111111

	Card number
	6216261000000000018

	Mobile phone number
	13552535506

	PIN
	123456

	Name
	全渠道

	Personal ID
	341126197709218366

	Card number
	5200831111111113

	Mobile phone number
	13552535506

	cvn2
	123

	Name
	全渠道

	Personal ID
	341126197709218366

	Expiry Date
	1911

Credit cards:
	Card number
	6221 5588 1234 0000

	Mobile phone number
	13552535506

	CVN2
	123

	Expiration Date
	month 11 year 17

	SMS Code on PC
	111111

	SMS Code on Mobile
	123456

	Card number
	6226388000000095

	Mobile phone number
	18100000000

	CVN2
	248

	Expiration Date
	month 12 year 1

	SMS Code on PC
	111111

	SMS Code on Mobile
	123456

The card issued outside China:
	Card number
	4938 8112 3456 2006

	Mobile phone number
	11112222

	CVN2
	123

	Expiration Date
	month 11 year22

	SMS Code on PC
	111111

[bookmark: _Toc256000055][bookmark: scroll-bookmark-63]Refunds for orders paid through UPOP
A full or a partial refund for orders paid using UPOP is executed by the standard tools:
· Through the administrative console (the description is provided in the document "Instruction on working with the console", the section "Working with orders");
· Using API, by means of the REST or SOAP interfaces. The request specification is presented in sections:
 - 7.1.7. Request for a refund of an order payment funds (SOAP),
 - 7.2.7. Request for a refund of an order payment funds (REST).
After RBS receives a refund request sent in one of the above mentioned ways, RBS sends a refund request to the UPOP system. In case of a successful response, the specified amount is refunded to the customer's account.
[bookmark: _Toc256000056][bookmark: scroll-bookmark-64]Payment using Apple Pay

	Currently, payments with the use of mobile applications are supported. Also a merchant can place on its site a special button that enables accepting payments through the Apple Pay system. The description of preparing the site of a merchant to accepting Apple Pay payment is outside of the scope of this document.

[bookmark: _Toc256000057][bookmark: scroll-bookmark-65]Merchant actions necessary to connect to Apple Pay
[bookmark: scroll-bookmark-66]Actions in the personal area of the Payment Gateway
Before you start accepting payments through Apple Pay, perform the following actions.
1. In the personal area, generate a key pair and upload the public key certificate signature request.
	The procedure is described in the instruction for the console administrator.

[bookmark: scroll-bookmark-67]Creating Merchant ID
To create your Merchant ID, perform the following actions.
	To be able to complete this procedure, you need to have an Apple Developer account.

1. In the personal area of Apple Member Center, go to Certificates, Identifiers & Profiles .
2. On the page that opens in the Identifiers section on the left, select Merchant IDs.
3. On the page that opens, click + (Add) in the right upper corner.
4. In the Merchant ID Description and Identifier fields, enter the description of your Apple merchant identifier and the identifier itself correspondingly.
	The identifier should begin with the word merchant. The address of your main site should be specified in the reverse order. For example, for the site sale.test.ru the identifier will look as merchant.ru.test.sale.

5. Click Continue.
6. On the page that opens, check the data that you have entered and click Register.
7. On the page that opens, click Done.
[bookmark: scroll-bookmark-68]Creating a certificate for Merchant ID
To create a certificate for your Merchant ID, perform the following actions.
1. In the personal area of Apple Member Center, go to Certificates, Identifiers & Profiles .
2. On the page that opens in the Identifiers section on the left, select Merchant IDs.
3. Select your Merchant ID from the list and click Edit.
4. Click Create Certificate and after this click Continue.
5. Click Choose File and specify the path to the file with the certificate signature request downloaded from the personal area of the payment gateway.
	The procedure for creation of a file with the certificate signature request is presented in the «Administrator's instruction on working with the console» document .

6. Click Generate.
7. Click Download, to download the created certificate to your computer.
8. After the certificate has been downloaded, click Done.
If you have completed the above mentioned actions, you can start developing the interaction of your mobile application or site with the payment gateway.
[bookmark: _Toc256000058][bookmark: scroll-bookmark-69]Interaction scheme on a payment with Apple Pay
On a payment with Apple Pay, the interaction occurs according to the following scheme.
[image: /wiki/download/attachments/60300046/Apple%20Pay.png?version=1&modificationDate=1507639691051&api=v2]
The scheme description is given below.
1. The user selects the payment method with the use of Apple Pay.
2. The payment data is sent to the Apple Pay system for processing.
3. To process the payment data in Apple Pay, the PKPaymentToken Object object is created that contains the paymentData property (here and further for more details, see Apple Pay documentation).
4. Apply Pay send a response to the merchant (a mobile application or a site).
5. The merchant extracts from the received PKPaymentToken Object object the paymentData property and encodes its content in Base64.
6. The merchant creates a payment request containing the paymentData property received for the response of Apple Pay an encoded in Base64, and sends in to the payment gateway for processing - see sections Request for a payment through Apple Pay (Web-Service) and Request for a payment through Apple Pay (REST).
7. The payment gateway processed the request.
8. The payment gateway returns the response with the result.
9. The mobile application or site displays to the customer the result.
[bookmark: _Toc256000059][bookmark: scroll-bookmark-70]Executing recurring payments through Apple Pay
To initiate recurring payments, it is necessary to create a corresponding binding. To do so, it is necessary to create a payment processing request and specify in it clientId:
· Request for processing a payment through Apple Pay (WS);
· Request for processing a payment through Apple Pay (REST).
For the subsequent recurring payments, the recurrentPayment request is used:
· Request for processing recurring payments through Apple Pay (WS);
· Request for processing recurring payments through Apple Pay (REST).
	When using the recurrentPayment request, the procedure for encrypting and decrypting payment data is not used.

[bookmark: _Toc256000060][bookmark: scroll-bookmark-71]Apple Pay - links to the reference information
The table below contains the links to the reference information on Apple Pay.
	Link
	Description

	https://www.apple.com/apple-pay/
	A section of the apple.com site containing general information on Apple Pay.

	https://developer.apple.com/apple-pay/
	A section of the apple.com site dedicated to developers and containing links and reference information concerning Apple Pay.

	https://developer.apple.com/support/apple-pay-sandbox/
	A section of the apple.com site containing information on testing.

	https://developer.apple.com/apple-pay/Getting-Started-with-Apple-Pay.pdf
	A document in the PDF format containing general information on Apple Pay and links to the reference information.

	https://developer.apple.com/apple-pay/Apple-Pay-Identity-Guidelines.pdf
	A document in the PDF format containing recommendations on designing sites and mobile applications in the Apple style.

	https://developer.apple.com/library/ios/ApplePay_Guide/
	A section of the apple.com site containing a programming reference.

	https://developer.apple.com/app-store/review/guidelines/#apple-pay
	A section of the App Store reference dedicated to Apple Pay.

	https://developer.apple.com/library/ios/documentation/UserExperience/Reference/PassKit_Framework/index.html#//apple_ref/doc/uid/TP40012158
	API reference (application programming interface).

	https://developer.apple.com/library/ios/documentation/PassKit/Reference/PaymentTokenJSON/PaymentTokenJSON.html#//apple_ref/doc/uid/TP40014929
	The description of the PKPaymentToken Object structure.

	https://devforums.apple.com/community/ios/connected/applepay/
	The development environment login page.

[bookmark: _Toc256000061][bookmark: scroll-bookmark-72]Payment using Android Pay

· Preliminary actions
· Interaction schemes on a payment with Android Pay
· Scheme with the use of the mobile application
· Scheme with the use of the site adapted for mobile applications

[bookmark: _Toc256000062][bookmark: scroll-bookmark-73]Preliminary actions

Before starting accepting payments through Android Pay, the merchant needs to create a key pair in the personal area of the payment gateway. Also on enabling Android Pay, merchants need to fill in the form at this link: https://androidpay.developers.google.com/signup.
[bookmark: _Toc256000063][bookmark: scroll-bookmark-74]Interaction schemes on a payment with Android Pay
[bookmark: scroll-bookmark-75]Scheme with the use of the mobile application
[image: /wiki/download/attachments/60300046/Android%20Pay%20mobile%20%28EN%29.png?version=1&modificationDate=1507640575791&api=v2]
1. A payer selects the Android Pay payment method.
2. The application requests the information on masked card data from Android Pay.
3. Android Pay returns the masked card data to the application.
4. The application displays to the payer the masked data of the card added in Android Pay.
5. The payer confirms the payment with the card added in Android Pay.
6. The application requests the encrypted card data from Android Pay
7. Android Pay encrypts the data using the public key.
8. Android Pay returns to the merchant the encrypted payment data.
9. The application send to the payment gateway the request for an Android Pay payment specifying the token received from Android:
· a payment request - the REST interface;
· a payment request - the WS interface.
10. The payment gateway decrypts the received token and processes the payment.
11. The payment gateway returns the payment result to the application.
12. The application displays the result of the purchase to the payer.

[bookmark: scroll-bookmark-76]Scheme with the use of the site adapted for mobile applications
[image: /wiki/download/attachments/60300046/Android%20Pay%20web%20%28EN%29.png?version=1&modificationDate=1507640842221&api=v2]
1. A payer selects the Android Pay payment method.
2. The application requests the encrypted card data from Android Pay
3. Android Pay encrypts the data using the public key.
4. Android Pay returns to the merchant the encrypted payment data.
5. The application send to the payment gateway the request for an Android Pay payment specifying the token received from Android:
· a payment request - the REST interface;
· a payment request - the WS interface.
6. The payment gateway decrypts the received token.
7. The payment gateway processes the payment.
8. The payment gateway returns the payment result to the application.
9. The application displays the result of the purchase to the payer.

[bookmark: _Toc256000064][bookmark: scroll-bookmark-77]Payment using Samsung Pay

	The functionality is currently in the testing phase.

[bookmark: _Toc256000065][bookmark: scroll-bookmark-78]Preliminary actions
Before the merchant starts accepting payments through Samsung Pay, it must register on the Samsung partner portal. After that, in the personal area of the payment gateway, the merchant must generate a key pair, export the certificate signature request, and upload it to the partner portal Samsung.
[bookmark: _Toc256000066][bookmark: scroll-bookmark-79]Scheme with the use of the mobile application
Below is the interaction scheme for processing a payment using the mobile application.
[image: /wiki/download/attachments/60300046/Samsung%20Pay%20mobile%20%28EN%29.png?version=1&modificationDate=1507641095894&api=v2]
1. A payer selects the Samsung Pay payment method.
2. The application sends the payment details to Samsung.
3. Samsung checks the application.
4. Samsung sends to the application a response containing, among other things, the 3ds.data parameter with the encrypted payment data.
5. The store send the payment request to the payment gateway, and the paymentToken parameter contains the contents of 3ds.data received from Samsung:
· samsungPay request, the REST interface;
· samsungPay request, the WS interface.
6. The payment gateway decrypts the contents of paymentToken and processed the payment.
7. The payment gateway sends the payment result to the application.
8. The application displays to the payer the result of the payment.

[bookmark: _Toc256000067][bookmark: scroll-bookmark-80]Payment page
[bookmark: scroll-bookmark-168][bookmark: _Toc256000068][bookmark: scroll-bookmark-81]Using a standard payment page
A store can use the standard payment page. To do so, the appropriate permission must be set in the store settings.
The system allows stores to load some elements (a logo and footer) to display them on the standard payment page. To load elements of the payment page:
1. In the administrative console, in the "Static" menu select "Payment page customization"
[image:]

2. The page designed for loading elements of the payment page will open:
[image:]
If the appropriate permission is present, the "Merchant" field is available to the user to select a merchant to the payment page of which it is planned to load the login or footer.
To upload a logo, follow these steps:
	For the logo to be displayed without distortion, its width and height must be 245 x 64 px.

1. If the Merchant field is active, specify the merchant onto the payment page of which the logo is to be uploaded. Enter several first symbols of the merchant login characters or name, then press ENTER on the keyboard. A list of merchant with names beginning with the entered characters will be displayed. Select the necessary merchant.
2. From the drop-down Element to load list, select the Logo value.
The line for the selection of a file with a logo will be displayed below and the button to load it (see the picture below).
[image:]

3. Click Browse and specify the path to the file on your computer. The file with the logo must be in the PNG format, the file size must not exceed 1 MB.
4. After the file has been selected, click Upload.
5. In case of a successful load, an information message will appear on the screen The element successfully loaded.
6. Click ОК.
After that, the uploaded logo will be displayed on the merchant's payment page (see the picture below). To change the logo, upload a new logo by repeating the steps above.
To download a footer, follow these steps:

1. If the Merchant field is active, specify the merchant onto the payment page of which the footer is to be uploaded. Enter several first symbols of the merchant login characters or name, then press ENTER on the keyboard. A list of merchant with names beginning with the entered characters will be displayed. Select the necessary merchant.
2. From the drop-down Element to load list, select the Footer value.
The line for entering the text will be displayed below and the button to load it (see the picture below).
[image:]

3. Using the keyboard, enter the text of the footer and click Upload.
After that, the entered text will be displayed at the bottom of the merchant's payment page (see the picture below). To change the text of the footer, repeat the steps above.
[bookmark: scroll-bookmark-234]The picture below shows an example of the standard payment page with a logo and footer loaded.
[image:]
[bookmark: scroll-bookmark-169][bookmark: _Toc256000069][bookmark: scroll-bookmark-82][bookmark: _GoBack]Using your own payment page
If a store plans to use its own payment interface pages, it is necessary:
1. To create an archive with payment interface pages in accordance with the requirements described in this document.

2. To upload the archive with the pages of the payment interface through the administrative console.

Creating payment interface pages
Requirements for creating pages are listed below in section 5.3. Requirements for creation of a payment page.
It is possible to use the standard pages of the payment interface as the base sample. To download an archive with the standard payment page:
1. In the administrative console in the "Statics" menu, select "Uploading and downloading statics".
[image:]

2. The Operation with merchant's static page will open
[image:]

3. Click "Download template static". The archive with the standard pages of the payment interface will be saved on your computer.

Uploading the archive with the payment interface pages
After the archive with the payment gateway pages is prepared, it must be uploaded to the payment gateway. To upload the archive:
1. In the administrative console in the "Static" menu, select "Uploading and downloading statics":
[image:]

2. The "Operation with merchant's static" page will open:
[image:]

3. In the "Upload static" section, click "Choose file" and specify the path to your archive with the payment interface pages.
4. The file name will be displayed in the "Zip-archive" field.
5. To start uploading the selected archive, click the "Upload".
6. In case of a successful operation, the information message "Archive successfully loaded" will be displayed. Click ОК.
In case of an unsuccessful operation, an error message will be displayed. The following reasons for errors are possible:
·
· The uploaded file is not a ZIP archive or is empty.
· The archive cannot be read.
· The archive does not contain the required elements - a payment page and error pages. Or the necessary elements are located not in the root of the archive, but in a folder that is packed into the archive. It is necessary to archive the items themselves, not the folder that contains them.
After uploading the archive with the payment page on the test server, the user performs testing of the payment page:
·
· using the REST interface \ the interface on web-services.
· using the order registration form.
· using the personal area and the console.
After testing the payment page, it is necessary to contact the bank to check the payment page. If the check is successful, the bank employees will transfer your payment page to the production server.
[bookmark: scroll-bookmark-235]
[bookmark: _Toc256000070][bookmark: scroll-bookmark-83]Requirements for the pages of the payment interface
[bookmark: _Toc256000071][bookmark: scroll-bookmark-84]General requirements for the file containing the payment interface
The file with payment pages must be a zip-format archive, where the pages and folders with JS-scripts, CSS-styles and pictures are located in the root. An example of an archive with payment pages can be provided by the bank.
It is recommended to use the 7-zip archiver for archiving.

The page must be an XHTML page with a mandatory DTD declaration:
	<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

[image:] ATTENTION It is mandatory to use the declared XHTML standard, otherwise browsers may not work.

It is forbidden to use absolute addresses to connect to any resources (images, scripts, styles). All addresses must be relative to the locations of the page and folders with all the necessary resources (http:host/images/test.jpg - forbidden, images/test.jpg - allowed).

The archive with payment pages <t0 /> must mandatory contain payment interface pages<t1 /> designed for displaying on computer monitors. The names of these pages should be the following (in lowercase):
· payment_<locale>.html – the payment page;
· errors_<locale>.html – the errors page.
Where:
· <locale> – the language of the page in the ISO 639-1 encoding. For example, ru for Russian or en for English.

For mobile devices, special pages can be used that are composed taking into account the need for compact and high-quality displaying on the screens of mobile devices. These pages are also put in the archive. The names of these pages must mandatorily be in lowercase and conform with the following templates:
· mobile_payment_<locale>.html – the payment page for mobile devices;
· mobile_errors_<locale>.html – the errors page for mobile devices.
Where
· <locale> – the language of the page in the ISO 639-1 encoding. For example, ru for Russian or en for English.

Moreover, arbitrary prefixes can be added to the names of page files (according to the template below). This will enable redirecting the customer to the appropriate page of the payment interface by passing in the registration request the necessary prefix (in the pageViewparameter). The names of these pages must mandatorily be in lowercase and conform with the following templates:
· <prefix>_payment_<locale>.html – the payment page;
· <prefix>_errors_<locale>.html – the errors page.
Where:
· <prefix> – an arbitrary value (up to 20 characters that can include letters, numbers and the "_" symbol), indicating what payment interface this page belongs to. It is necessary to pass this value in the pageView parameter of the order registration request so that the pages of this interface are loaded for the customer.
· <locale> – the page language in the ISO 639-1 encoding . For example, ru for Russian or en for English.

The payment page language:
· Is defined by the language parameter that is passed on registering an order
· Also, the localization.js script allows you to switch the language of the payment page when the customer is redirected to it. To do this, the <t0 /> language <t1 /> parameter with the language specified in the ISO 639-1 encoding must be passed to the URL of the payment page.. The examples of URLs of payment pages in Russian and English correspondingly:
-- https://server/application_context/payment.html?mdOrder=0ec5a6ee-0a1e-4e71-ab34-0cf818c1ad6f&language=ru
-- https://server/application_context/payment.html?mdOrder=0ec5a6ee-0a1e-4e71-ab34-0cf818c1ad6f&language=en

Which pages are to be loaded to the customer's browser (regular, mobile or with a certain prefix in the name) is determined by the special parameter, pageView, when registering an order The description of pageView is presented in the sections "Order registration request" and "Request for order registration with pre-authorization"

The archive with payment interface pages can also contain the following pages:
· A payment page that is loaded in case of passing a binding ID in the registration request.
· The final page (if a store has the appropriate permission, the customer is redirected to the final page after a payment attempt).
· The receipt page (the customer receives a receipt in the pdf-format after the corresponding request on the final page).

When creating the layout of the pages of the payment interface, it is necessary to use the Unicode (UTF-8) encoding.

[bookmark: _Toc256000072][bookmark: scroll-bookmark-85]Requirements for the payment page
The page must contain a number of necessary objects, as well as a number of fields with specific names for entering payment information.

[bookmark: scroll-bookmark-86]Page name
Name of a general page – payment_<locale>.html,
Name of a mobile page – mobile_payment_<locale>.html,
Name of a page with an arbitrary prefix – <prefix>_payment_<locale>.html

Where:
· <prefix> – a part of a page name that can be passed in the <t3 /> pageView <t4 /> parameter of the order registration request for redirecting the customer to the corresponding page of the payment interface.
· <locale> – the page language in the ISO 639-1 encoding . For example, ru for Russian or en for English.

[bookmark: scroll-bookmark-87]Page header
The following scripts must be included in the page header:

The standard set:
	<script type="text/javascript" src="../../js/jquery-1.8.1.min.js"></script>
 <script type="text/javascript" src="../../js/jquery.timers-1.2.js"></script>
 <script type="text/javascript" src="../../js/jquery.url.js"></script>
 <script type="text/javascript" src="../../js/jquery.payment_new.js"></script>
 <script>
 $(document).payment({
 });
 </script>

The extended set:
	<script type="text/javascript" src="../../js/jquery-1.8.1.min.js"></script>
 <script type="text/javascript" src="../../js/jquery.timers-1.2.js"></script>
 <script type="text/javascript" src="../../js/jquery.url.js"></script>
 <script type="text/javascript" src="../../js/jquery.payment_new.js"></script>
 <script>
 $(document).payment({
 language: "ru",
 messageAjaxError: "The service is temporarily unavailable. Try again later.",
 messageTimeRemaining: "The session will end in #MIN#:#SEC#",
 visualValidationEnabled: true,
 agreementCheckboxEnabled: true,
 bindingCheckboxEnabled: true,
 getFeeEnabled:true
 });
 </script>

The fields of a script of the extended type must be filled in the following way:
· language – the value of the language name that matches the one selected for the page header
· messageAjaxError – the message about an internal Ajax error (that occurs, for example, when there is no access to the system)
· messageTimeRemaining – a message of the session counter. It must include the "# MIN #" and "# SEC #" keywords, which in real time will be replaced by minutes and seconds indicating the time remaining before the end of the session.
· visualValidationEnabled – the indicator of switching on/off visual confirmation of the validation results. If true, then a field with a correct value is colored in green and a field with an incorrect value — in red. If false (or not specified), visual validation will not work — the field colors will not change.
· agreementCheckboxEnabled – a flag for switching on/off the support of the store offer checkbox. If the variable value is true, then validation is switched on for the selection of the check-box that assumes the user's agreement to pay.
· bindingCheckboxEnabled – a flag or switching on/off the support of remembering a card.
· getFeeEnabled – a flag or switching on/off displaying the fee in a payment.

[bookmark: scroll-bookmark-88]Page body
[bookmark: scroll-bookmark-89]Mandatory elements on the payment page
All blocks and elements described in this paragraph must be placed in the body of the page, unless other is specified.

· The block containing the unique order number:
	<div id="orderNumber"></div>

· The block containing the order amount:
	<div id="amount"></div>

· The block containing the order description:
	<div id="description"></div>

The page must contain the payment form:
· All the hidden fields specified below are mandatory. The language field value must contain a two-letter code of the page locale.
	<form name="PaymentForm" action="#" method="post" id="formPayment">
 <input type="hidden" id="expiry" >
 <input type="hidden" id="mdOrder" >
 <input type="hidden" id="location" value="/../" >
 <input type="hidden" id="language" value="<locale>" >
 </form>

The form must also contain fields for entering information for processing the payment:
· The field for entering the credit card number:
	<input name="$PAN" id="iPAN" maxlength="19" type="text" autocomplete="off" />

· The selector of the month and the selector of the credit card expiration year (it is filled in automatically when the page is loaded):
	<select name="MM" id="month">
 <option value="01" selected> 1 - January</option>
 <option value="02"> 2 - February</option>
 <option value="03"> 3 - March</option>
 <option value="04"> 4 - Aprile</option>
 <option value="05"> 5 - May</option>
 <option value="06"> 6 - June</option>
 <option value="07"> 7 - July</option>
 <option value="08"> 8 - August</option>
 <option value="09"> 9 - September</option>
 <option value="10">10 - October</option>
 <option value="11">11 - November</option>
 <option value="12">12 - December</option>
 </select> /
 <select name="YYYY" id="year">
 <option value='2012' selected>2012</option>
 <option value='2013'>2013</option>
 <option value='2014'>2014</option>
 <option value='2015'>2015</option>
 <option value='2016'>2016</option>
 <option value='2017'>2017</option>
 <option value='2018'>2018</option>
 <option value='2019'>2019</option>
 <option value='2020'>2020</option>
 <option value='2021'>2021</option>
 <option value='2022'>2022</option>
 </select>

· The field for entering the cardholder name:
	<input name="TEXT" id="iTEXT" maxlength="90" type="text" autocomplete="off" />

· The field for entering the cvc/cvv/cid -code:
	<input name="$CVC" id="iCVC" maxlength="3" type="password" autocomplete="off" />

· The button for the payment confirmation:
	<input value="Pay" type="button" id="buttonPayment">

The following code must be placed below the payment form:
	<form id="acs" method="post" action="">
 <input type="hidden" id="MD" name="MD"/>
 <input type="hidden" id="PaReq" name="PaReq"/>
 <input type="hidden" id="TermUrl" name="TermUrl"/>
 </form>

The following objects must also be placed on the payment page:
· The block where errors are displayed (for example, incorrect card data):
	<div id="errorBlock" style="color:red;"></div>

· The block where the message is displayed about the time remaining till the end of the payment session:
	<div id="numberCountdown"></div>

· The block where the information message is displayed on switching from the payment page to the final page:
	<div id="infoBlock"></div>

· The block where the indicator of the progress of a request to the server is displayed (on confirming the payment and a subsequent call to the server):
	<div id="indicator" style="display:none;"></div>

If all the requirements are met, on paying for an order, on the payment page you will see:
- the order amount;
- the order number in the store system;
- the order description (displayed only in the description field is filled in).

[bookmark: scroll-bookmark-90]Placing additional elements on the payment page
[bookmark: scroll-bookmark-91]Displaying payment parameters
To display other parameters on the payment page, use the following blocks:
	<tr valign="top" id="Parameter name">
<td valign="top"></td>
</tr>

where The parameter name can have the following values:
·
· amount - the amount of order registration in the minor units;
· amountFormatted - a formatted registration amount (with separators of digit groups and a decimal point);
· approvedAmount - the amount put on hold;
· approvedAmountFormatted - a formatted hold amount (with separators of digit groups and a decimal point);
· currency - three-digit numeric currency code;
· currencyName - three-digit alphabetic currency code;
· date - the date of completion of the transaction payment, dd.MM.yyyy HH: mm: ss;
· depositedAmount - сthe amount to be debited;
· depositedAmountFormatted - the formatted amount to be debited (with separators of digit groups and a decimal point);
· depositFlag - a sign of a two-stage transaction;
· ipCountryCode - the country code of the payer;
· mdorder - the order number in the payment system;
· mdOrder - нorder number in the payment system;
· merchantFullName - the full name of the merchant;
· merchantLogin - the merchant login;
· orderDescription - the order description;
· orderNumber - the order number in the merchant system;
· panCountryCode - the country code of the card of the payer;
· paymentState - the transaction status (started / payment_approved / payment_declined / payment_void/payment_deposited / refunded);
· paymentWay - the payment method;
· processingId - the merchant identifier in the processing system;
· terminalId - the terminal.

[bookmark: scroll-bookmark-92]Displaying additional parameters of an order
To add any additional order parameters, use queriedParams. To do this, add to the payment page headers theparamNamesparameter. The parameters to be displayed are listed in square brackets separated by commas.
	$(document).payment({
 paramNames:[parameter_name1, parameter_name2, parameter_name3]
 });

To display a parameter on the page, add an element with the ID equal to the parameter name. If a parameter will pass a link, add an A element with the same ID.
	<div id=” parameter_name1”></div>
</div>

Example:
To display the return to the store link on the payment page, it is necessary:

1. To add the payment page:
·
· Script:
	<script>
$(document).payment(
{ paramNames:['backUrl'] }
);
</script>

·
· An element of the link type with the same ID as specified above in paramNames:
	Return to store

2. To pass backUrlas an additional parameter on registering an order (for a REST-request in jsonParams; for a SOAP-request in the params tag).

[bookmark: scroll-bookmark-93]Notifying a customer about an executed operation
If the functionality is used of notifying the customer about the payment / cancellation / return / rejection of the order, add the following block:
	<input type="text" id="email"/>

the field for entering the email address of the customer.

[bookmark: scroll-bookmark-94]Displaying the amount of the fee
If the merchant has the permission to work with fees, it is necessary to place the following elements on the payment page:

The block that contains the fee amount:
	<div id="feeAmount"></div>

The block with the information about the offer conditions of the store.. The payment will not be processed if the user has not checked the agreement box. The header of the agreementCheckboxEnabled page must contain true:
	<label><input type="checkbox" class="checkbox" id="iAgree"> I have read and accept the conditions
of the offer</label>

[bookmark: scroll-bookmark-95]Check box of saving the card data of a payment
If the permission to work with binding is set in the settings of the merchant, the payment page must contain a checkbox, which allows the customer to indicate the need to remember the card data of this payment. The header of the bindingCheckboxEnabled page must contain true:
	<label class="ch-wrap"><input type="checkbox" class="checkbox" id="createBinding">Remember the data of this card</label>

[bookmark: scroll-bookmark-96]Card data validation
To display the process of passing the validation of the card data to the customer, the following code must be placed on the payment page:
1. .valid
{ border: 1px solid #088A08; background-color: #CEF6CE; }
.invalid
{ border: 1px solid #8A0808; background-color: #F6CECE; }
2. visualValidationEnabled:true,
3. id="iPAN", id="iCVC", id="iTEXT", id="month", id="year

[bookmark: _Toc256000073][bookmark: scroll-bookmark-97]Requirements for the payment page in case of passing a binding ID in the registration request
If the binding ID has been passed in the order registration request, the payer is redirected to the payment page where only CVC is required.

[bookmark: scroll-bookmark-98]Page name
The page name is payment_binding_<locale>.html,
Where:
· <locale> – the language of the page in the ISO 639-1 encoding. For example, ru for Russian or en for English.

[bookmark: scroll-bookmark-99]Page header
The following scripts must be included in the page header:
	<script type="text/javascript" src="../../js/jquery-1.4.2.min.js"></script>
 <script type="text/javascript" src="../../js/jquery.timers-1.2.js"></script>
 <script type="text/javascript" src="../../js/jquery.url.js"></script>
 <script type="text/javascript" src="../../js/jquery.payment_binding.js"></script>
 <script type="text/javascript">
 $(document).payment_binding({
 visualValidationEnabled:true
 });
 $(document).ready(function () {
 $(document).payment_binding("validate");
 $(document).payment_binding("showError", "");
 });
 </script>

[bookmark: scroll-bookmark-100]Page body
Optional fields:
· The block containing the unique order number:
	<div id="orderNumber"></div>

· The block containing the order amount:
	<div id="amount"></div>

· The block containing the order description:
	<div id="description"></div>

· The block that contains the masked card number:
	<div id="maskedPan"></div>

The page must contain the payment form:
	<form action="" method="post" id="bindingPaymentForm">

The form must also contain fields for entering information for processing the payment:
· The field for entering the cvc/cvv/cid -code:
	<input name="$CVC" id="cvc" maxlength="3" type="password" autocomplete="off" />

· The button for the payment confirmation:
	<input value="Pay" type="button" id="sendPayment">

The following code must be placed below the payment form:
	<form id="acs" method="post" action="">
 <input type="hidden" id="md" name="MD"/>
 <input type="hidden" id="paReq" name="PaReq"/>
 <input type="hidden" id="termUrl" name="TermUrl"/>
 </form>

The payment page must also contain the following objects:
· The block that displays errors:
	<div id="errorBlock" style="color:red;"></div>

· The block where the message is displayed about the time remaining till the end of the payment session:
	<div id="countdown"></div>

· The block where the information message is displayed on switching from the payment page to the final page:
	<div id="infoBlock"></div>

· The block where the indicator of the progress of processing the request to the server is displayed (when confirming a payment and a subsequent call to the server):
	<div id="indicator" style="display:none;"></div>

[bookmark: _Toc256000074][bookmark: scroll-bookmark-101]Requirements for the errors page
The page must contain a number of necessary objects.

[bookmark: scroll-bookmark-102]Page name
The name of a general page – errors_<locale>.html,
The name of a mobile device page – mobile_errors_<locale>.html
The name of al page with an arbitrary prefix – <prefix>_errors_<locale>.html

Where:
· <prefix> – the part of the page name that can be passed in the pageView parameter of the order registration request to redirect the customer to the corresponding page of the payment interface.
· <locale> – the page language in the ISO 639-1 encoding . For example, ru for Russian or en for English.

[bookmark: scroll-bookmark-103]Page header
The page header must contain the following scripts:
	<script type="text/javascript" src="../../js/jquery-1.4.2.min.js"></script>
 <script type="text/javascript" src="../../js/jquery.timers-1.2.js"></script>
 <script type="text/javascript" src="../../js/jquery.url.js"></script>
 <script type="text/javascript" src="../../js/error_page.js"></script>

	<script type="text/javascript">
 var lang = "<locale>";
 </script>

where <locale> - a two-letter code of a locale the page (for example, ru - Russian, en - English, ISO 639-1).

[bookmark: scroll-bookmark-104]Page body
All the blocks and elements described below must mandatory be placed in the body of the page.
Form:
	<form name="errorForm" action="#" method="post" id="errorForm">
 <input type="hidden" id="language" value="<locale>" type="hidden">
 </form>

where <locale> - a two-letter code of a locale the page (for example, ru - Russian, en - English, ISO 639-1).

The form must also contain a block where errors are displayed (for example, about the end of a session or a message about an already processed payment):
	<div id="errorBlock" style="color:red;"></div>

[bookmark: _Toc256000075][bookmark: scroll-bookmark-105]Requirements for the final page
If the merchant has the appropriate permission, the customer will be redirected to the final page after an attempt to pay.

[bookmark: scroll-bookmark-106]Page name
The page name is finish.html.

[bookmark: scroll-bookmark-107]Page header
The following scripts must be included in the page header:
	<script type="text/javascript" src="../../js/jquery-1.9.1.min.js"></script>
	<script type="text/javascript" src="../../js/jquery-ui-1.9.2.custom.min.js"></script>
	<script type="text/javascript" src="../../js/select.js"></script>
	<script type="text/javascript" src="../../js/maskedinput.js"></script>
	<script type="text/javascript" src="../../js/jquery.finish.main.js"></script>
	<script type="text/javascript" src="../../js/jquery.finishpayment.js"></script>
	<script type="text/javascript" src="../../js/jquery.url.js"></script>
	<script type="text/javascript" src="../../js/localization.js"></script>

	<script type="text/javascript">
		$(document).paymentFinished();
		$(document).ready(function() {
			var logo = $(".user-logo");
			function isLogoImg(logodiv){
				var img = new Image();
				img = logodiv.find(".bg");
				img.error(function(){
					logodiv.remove();
				});
				img.load(function(){
					logodiv.find(".title-logo").remove();
				});
			}
			isLogoImg(logo);
		});
		localizePage();
	</script>

[bookmark: scroll-bookmark-108]Page body
The page used elements of the span type:
	<span langLbl="<LOCALIZE_PROPERTY>">

For the values of<LOCALIZE_PROPERTY> see localization.js

Also the page used elements of the divtype:
	<div id="<PROPERTY>"></div>

, where <PROPERTY> – the order parameter. The possible values are:
· status – the order status;
· paymentDate – the payment date;
· orderNumber – the order number in the store system;
· approvalCode – the authorization code in IPS;
· terminalId – the terminal identifier;
· refNum – the reference number;
· amount – the order amount;
· formattedAmount – the formatted registration amount (with separators of digit groups and a decimal point);
· feeAmount – the fee amount;
· formattedFeeAmount – the formatted fee amount (with separators of digit groups and a decimal point);
· currency – the payment currency;
· panMasked – the masked number of the card ;
· expiry – the card expiration date;
· cardholderName – the cardholder name;
· orderDescription – the order description;
· merchantShortName – the short name of the merchant;
· merchantFullName – the full name of the merchant;
· merchantUrl – the address of the merchant site;
· actionCodeDescription – the description of the response code of the processing system;
· orderParams.<ADDITIONAL_PARAM> – is used to display additional transaction parameters, where <ADDITIONAL_PARAM> – the name of an additional parameter.

The final page can contain the following elements:

The element of returning to the store from the final page:
	Back to the store

The element of the generation of a PDF file :
	Save as PDF

The slider element:
	<div class="load-wrapper">
 <div class="bg"></div>
 <div class="clock"></div>
</div>

[bookmark: _Toc256000076][bookmark: scroll-bookmark-109]Requirements for the receipt page
The customer receives this page as a PDF-file, when he or she presses "Save as PDF" on the final page.

[bookmark: scroll-bookmark-110]Page name
The name of the successful payment page - finish_template_success_<locale>.html.
The name of the declined payment page – finish_template_error_<locale>.html.
Where:
· <locale> – the language of the page in the ISO 639-1 encoding. For example, ru for Russian or en for English.

[bookmark: scroll-bookmark-111]Requirements for creation of a page
It is forbidden to use JavaScript when creating this page.

To display an order parameter on the page, specify the parameter name as follows:
	${<PROPERTY>}

, where <PROPERTY> – the name of an order parameter. The possible values are:
· status – the order status;
· paymentDate – the payment date;
· orderNumber – the order number in the store system;
· approvalCode – the authorization code in IPS;
· terminalId – the terminal identifier;
· refNum – the reference number;
· amount – the order amount;
· formattedAmount – the formatted registration amount (with separators of digit groups and a decimal point);
· feeAmount – the fee amount;
· formattedFeeAmount – the formatted fee amount (with separators of digit groups and a decimal point);
· currency – the payment currency;
· panMasked – the masked number of the card ;
· expiry – the card expiration date;
· cardholderName – the cardholder name;
· orderDescription – the order description;
· merchantShortName – the short name of the merchant;
· merchantFullName – the full name of the merchant;
· merchantUrl – the address of the merchant site;
· actionCodeDescription – the description of the response code of the processing system;
· orderParams.<ADDITIONAL_PARAM> – is used to display additional transaction parameters, where <ADDITIONAL_PARAM> – the name of an additional parameter.

[bookmark: scroll-bookmark-170][bookmark: _Toc256000077][bookmark: scroll-bookmark-112]Plug-ins and code examples for the integration with the gateway
Plug-ins are provided on demand for the following CMSs:
1. Bitrix
2. CS-Cart
3. Drupal
4. Joomla
5. UMI
6. Wordpress

The following samples of the PHP code can be used to simplify the integration:

A sample of the PHP code to integrate with the gateway through WS:
	<?php

/**
 * THE PAYMENT GATEWAY CONNECTION DATA
 *
 * USERNAME			Store login received on the connection.
 * PASSWORD			Store password received on the connection.
 * WSDL				The address of the web-service description.
 * RETURN_URL		The address to which to redirect the user
 *					in case of a successful payment.
 */
define('USERNAME', 'USERNAME');
define('PASSWORD', 'PASSWORD');
define('WSDL', 'https://server/payment/webservices/merchant-ws?wsdl');
define('RETURN_URL', 'http://your.site/ws.php');

/**
 * THE CLASS FOR INTERACTION WITH THE PAYMENT GATEWAY
 * The class is inherited from the standard class, SoapClient.
 */
class Gateway extends SoapClient {

 /**
 * AUTHORIZATION IN THE PAYMENT GATEWAY
 * Generating a SOAP-header for WS_Security.
 *
 * RESPONSE
 *		SoapHeader		SOAP-header for authorization
 */
 private function generateWSSecurityHeader() {
 $xml = '
 <wsse:Security SOAP-ENV:mustUnderstand="1" xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <wsse:UsernameToken>
 <wsse:Username>' . USERNAME . '</wsse:Username>
 <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0#PasswordText">' . PASSWORD . '</wsse:Password>
 <wsse:Nonce EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary">' . sha1(mt_rand()) . '</wsse:Nonce>
 </wsse:UsernameToken>
 </wsse:Security>';

 return new SoapHeader('http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd', 'Security', new SoapVar($xml, XSD_ANYXML), true);
 }

 /**
 * CALLING A METHOD OF THE PAYMENT GATEWAY
 * SoapClient::__call() function override.
 *
 * PARAMETERS
 *		method		A method from API.
 *		data		Data array.
 *
 * RESPONSE
 *		response	Response.
 */
 public function __call($method, $data) {
 $this->__setSoapHeaders($this->generateWSSecurityHeader()); // Creating a header for authorization
 return parent::__call($method, $data); // Returning the result of the SoapClient::__call() method
 }
}

/**
 * DISPLAYING THE FORM ON THE SCREEN
 */
if ($_SERVER['REQUEST_METHOD'] == 'GET' && !isset($_GET['orderId'])) {
 echo '
 <form method="post" action="/ws.php">
 <label>Order number</label>

 <input type="text" name="orderNumber" />

 <label>Amount</label>

 <input type="text" name="amount" />

 <button type="submit">Submit</button>
 </form>
 ';
}

/**
 * PROCESSING THE DATA FROM THE FORM
 */
else if ($_SERVER['REQUEST_METHOD'] == 'POST') {
 $client = new Gateway(WSDL);
 $data = array('orderParams' => array(
 'returnUrl' => RETURN_URL,
 'merchantOrderNumber' => urlencode($_POST['orderNumber']),
 'amount' => urlencode($_POST['amount'])
));

 /**
 * REGISTERING A ONE-PHASE PAYMENT IN THE PAYMENT GATEWAY
 *		registerOrder
 *
 * PARAMETERS
 *		merchantOrderNumber		Unique identifier of the order in the store.
 *		amount					Order amount.
 *		returnUrl				Address to which the user is to be redirected in case of a successful payment.
 *
 * RESPONSE
 *		In case of an error:
 *			errorCode			Error code. The list of available values is presented in the table below.
 *			errorMessage		Error description.
 *
 *		In case of a successful registration:
 *			orderId				Identifier of the order in the payment system. It is unique within the system.
 *			formUrl				URL of the payment form to which the customer's browser is to be redirected.
 *
 *	Error code		Description
 *		0			The request has been processed without system errors.
 *		1			A request with this number has been already registered in the system;
 *					Wrong order number.
 *		3			Unknown (forbidden) currency.
 *		4			A required request parameter is missing.
 *		5			An error of the request parameter value.
 *		7			System error.
 */
 $response = $client->__call('registerOrder', $data);

 /**
 * REGISTERING A TWO-PHASE PAYMENT IN THE PAYMENT GATEWAY
 *		registerOrderPreAuth
 *
 * The parameters and the response are the same as in the previous method.
 * It is necessary to call either registerOrder or registerOrderPreAuth.
 */
// $response = $client->__call('registerOrderPreAuth', $data);

 if ($response->errorCode != 0) { // In case of an error, displaying it
 echo 'Error #' . $response->errorCode . ': ' . $response->errorMessage;
 } else { // In case of success, redirecting the customer to the payment page
 header('Location: ' . $response->formUrl);
 die();
 }

}

/**
 * PROCESSING THE DATA AFTER COMPLETING THE PAYMENT FORM
 */
else if ($_SERVER['REQUEST_METHOD'] == 'GET' && isset($_GET['orderId'])){
 $client = new Gateway(WSDL);
 $data = array('orderParams' => array('orderId' => $_GET['orderId']));

 /**
 * ORDER STATUS REQUEST
 *		getOrderStatus
 *
 * PARAMETERS
 *		orderId			Identifier of the order in the payment system. It is unique within the system.
 *
 * RESPONSE
 *		ErrorCode		Error code. The list of available values is presented in the table below.
 *		OrderStatus		The status of the order in the payment system is defined by the value of this parameter.
 *						The list of available values is presented in the table below. It is missing if the order has not been found.
 *
 *	Error code		Description
 *		0			The request has been processed without system errors.
 *		2			The order has been declined because of an error in the payment details.
 *		5			Access denied;
 *					The user must change the password;
 *					The order number is not specified.
 *		6			An unknown order id.
 *		7			System error.
 *
 *	Order status	Description
 *		0			The order has been registered, but not paid.
 *		1			The-preauthorized amount is put on hold (for two-phase payments).
 *		2			The full authorization of the order amount has been processed.
 *		3			Authorization has been cancelled.
 *		4			A refund operation has been executed for the transaction.
 *		5			Authorization through the ACS of the issuing bank has been initiated.
 *		6			Authorization declined.
 */
 $response = $client->__call('getOrderStatus', $data);

 // Displaying an error code and the order status
 echo '
 Error code: ' . $response->errorCode . '

 Order status: ' . $response->orderStatus . '

 ';
}

?>

An example of the PHP code for the integration with the gateway using REST:
	<?php

/**
 * THE PAYMENT GATEWAY CONNECTION DATA
 *
 * USERNAME			Store login received on the connection.
 * PASSWORD			Store password received on the connection.
 * GATEWAY_URL		The payment gateway address.
 * RETURN_URL		The address to which to redirect the user
 *					in case of a successful payment.
 */
define('USERNAME', 'USERNAME');
define('PASSWORD', 'PASSWORD');
define('GATEWAY_URL', 'https://server/payment/rest/');
define('RETURN_URL', 'http://your.site/rest.php');

/**
 * THE FUNCTION FOR THE INTERACTION WITH THE PAYMENT GATEWAY
 *
 * To send POST-requests to the payment gateway a standard library with URL is used
 * .
 *
 * PARAMETERS
 *		method		A method from API.
 *		data		Data array.
 *
 * RESPONSE
 *		response	Response.
 */
function gateway($method, $data) {
 $curl = curl_init(); // Initiating the request
 curl_setopt_array($curl, array(
 CURLOPT_URL => GATEWAY_URL.$method, // The full address of the method
 CURLOPT_RETURNTRANSFER => true, // To return a response
 CURLOPT_POST => true, // POST method
 CURLOPT_POSTFIELDS => http_build_query($data) // The data in the request
));
 $response = curl_exec($curl); // Executing the request

 $response = json_decode($response, true); // Decoding from JSON to an array
 curl_close($curl); // Closing the connection
 return $response; // Returning the response
}

/**
 * DISPLAYING THE FORM ON THE SCREEN
 */
if ($_SERVER['REQUEST_METHOD'] == 'GET' && !isset($_GET['orderId'])) {
 echo '
 <form method="post" action="/rest.php">
 <label>Order number</label>

 <input type="text" name="orderNumber" />

 <label>Amount</label>

 <input type="text" name="amount" />

 <button type="submit">Submit</button>
 </form>
 ';
}

/**
 * PROCESSING THE DATA FROM THE FORM
 */
else if ($_SERVER['REQUEST_METHOD'] == 'POST') {
 $data = array(
 'userName' => USERNAME,
 'password' => PASSWORD,
 'orderNumber' => urlencode($_POST['orderNumber']),
 'amount' => urlencode($_POST['amount']),
 'returnUrl' => RETURN_URL
);

 /**
 * THE REQUEST FOR REGISTERING A ONE-PHASE PAYMENT IN THE PAYMENT GATEWAY
 *		register.do
 *
 * PARAMETERS
 *		userName		Store login.
 *		password		Store password.
 *		orderNumber		Unique identifier of the order in the store.
 *		amount			Order amount in the minor denomination of the currency.
 *		returnUrl		Address to which the user is to be redirected in case of a successful payment.
 *
 * RESPONSE
 *		In case of an error:
 *			errorCode		Error code. The list of available values is presented in the table below.
 *			errorMessage	Error description.
 *
 *		In case of a successful registration:
 * 			orderId			Identifier of the order in the payment system. It is unique within the system.
 *			formUrl			URL of the payment form to which the customer's browser is to be redirected.
 *
 *	Error code		Description
 *		0			The request has been processed without system errors.
 *		1			An order with the same identifier has already been registered in the system.
 *		3			Unknown (forbidden) currency.
 *		4			A required request parameter is missing.
 *		5			An error of the request parameter value.
 *		7			System error.
 */
 $response = gateway('register.do', $data);

 /**
 * THE REQUEST FOR REGISTERING A TWO-PHASE PAYMENT IN THE PAYMENT GATEWAY
 *		registerPreAuth.do
 *
 * The parameters and the response are the same as in the previous method.
 * It is necessary to call either register.do or registerPreAuth.do.
 */
// $response = gateway('registerPreAuth.do', $data);

 if (isset($response['errorCode'])) { // In case of an error, displaying it
 echo 'Error #' . $response['errorCode'] . ': ' . $response['errorMessage'];
 } else { // In case of success, redirecting the customer to the payment page
 header('Location: ' . $response['formUrl']);
 die();
 }
}

/**
 * PROCESSING THE DATA AFTER COMPLETING THE PAYMENT FORM
 */
else if ($_SERVER['REQUEST_METHOD'] == 'GET' && isset($_GET['orderId'])){
 $data = array(
 'userName' => USERNAME,
 'password' => PASSWORD,
 'orderId' => $_GET['orderId']
);

 /**
 * ORDER STATUS REQUEST
 *		getOrderStatus.do
 *
 * PARAMETERS
 *		userName		Store login.
 *		password		Store password.
 *		orderId			Identifier of the order in the payment system. It is unique within the system.
 *
 * RESPONSE
 *		ErrorCode		Error code. The list of available values is presented in the table below.
 *		OrderStatus		The status of the order in the payment system is defined by the value of this parameter.
 *						The list of available values is presented in the table below. It is missing if the order has not been found.
 *
 *	Error code		Description
 *		0			The request has been processed without system errors.
 *		2			The order has been declined because of an error in the payment details.
 *		5			Access denied;
 *					The user must change the password;
 *					The order number is not specified.
 *		6			An unknown order id.
 *		7			System error.
 *
 *	Order status	Description
 *		0			The order has been registered, but not paid.
 *		1			The-preauthorized amount is put on hold (for two-phase payments).
 *		2			The full authorization of the order amount has been processed.
 *		3			Authorization has been cancelled.
 *		4			A refund operation has been executed for the transaction.
 *		5			Authorization through the ACS of the issuing bank has been initiated.
 *		6			Authorization declined.
 */
 $response = gateway('getOrderStatus.do', $data);

 // Displaying an error code and the order status
 echo '
 Error code: ' . $response['ErrorCode'] . '

 Order status: ' . $response['OrderStatus'] . '

 ';
}

?>

[bookmark: _Toc256000078][bookmark: scroll-bookmark-113]Request specifications
[bookmark: _Toc256000079][bookmark: scroll-bookmark-114]Web-Service interface
[bookmark: scroll-bookmark-180][bookmark: _Toc256000080][bookmark: scroll-bookmark-115]Order registration request
The order registration request is called registerOrder, it is described in WSDL of the service.
Request examples:
	Name
	Type
	Mandatory
	Description

	merchantOrderNumber
	ANS..32
	yes
	Identifier of an order in the store system, it is unique for each store within the system

	description
	ANS..512
	no
	Description of the order in any format

	amount
	N..20
	yes
	Amount of the payment in the minor denomination of the currency

	currency
	N3
	no
	ISO 4217 code of the payment currency. If the code is not specified, the default value is 810 (Russian roubles).

	language
	A2
	no
	Language in the ISO 639-1 encoding. If the language is not specified, the default language specified in the store settings is used.

	pageView
	ANS..20
	no
	By the value of this parameter, it is defined what pages of the payment interface are to be loaded for the customer. The possible values are:
· DESKTOP – to load pages the layout of which is designed to be displayed on displays of PCs (a search for pages with the payment_<locale>.html and errors_<locale>.htmlnames will be executed in the archive of payment interface pages);
· MOBILE – to load pages the layout of which is designed to be displayed on displays of mobile devices (a search for pages with the mobile_payment_<locale>.html and mobile_errors_<locale>.html names will be carried out in the archive of payment interface pages);
· If a store has created payment interface pages with arbitrary prefixes added to the names of page files, pas the value of the necessary prefix in the pageView parameter to load corresponding pages. For example on passing the iphone value, a search will be carried out in the archive of payment interface pages for pages with the iphone_payment_<locale>.html and iphone_error_<locale>.html names.
Where:
locale – the language of the page in ISO 639-1. For example, ru for Russian or en for English.
If a parameter is missing or does not match the format, it is considered that by default pageView=DESKTOP.

	sessionTimeoutSecs
	N...9
	no
	Order lifetime in seconds.
If the parameter is not specified, the value specified in the merchant settings or the default value (1200 seconds = 20 minutes) will be used.
If the expirationDateparameter is present in the request, the value of the sessionTimeoutSecs parameter is ignored.

	bindingId
	AN..255
	no
	Identifier of the binding created earlier. It can be used only if the store has the permission to work with bindings. If this parameter is passed in the given request, it means that:
1. The given order can be paid only using a binding;
2. The payer will be redirected to the payment page on which only entering CVC is required.

	expirationDate
	ANS
	no
	The date and time of the order lifetime expiration. The format used: yyyy-MM-dd'T'HH:mm:ss.
If this parameter is not passed in the request, sessionTimeoutSecs is used to define the date and time of the order lifetime expiration.

	returnUrl
	AN..512
	yes
	Address to which the user is to be redirected in case of a successful payment. The address must be specified in full including the protocol used (for example, https://test.ru instead of test.ru). Otherwise, the user will be redirected to the address of the following type: http://<payment_gateway_address>/<merchant_address>.

	failUrl
	AN..512
	no
	The address to which the user iis to be redirected in case of an unsuccessful payment. The address must be specified in full including the protocol used (for example, https://test.ru instead of test.ru). Otherwise, the user will be redirected to the address of the following type: http://<payment_gateway_address>/<merchant_address>.

	params
	
	no
	Tag containing attributes to pass additional parameters of the merchant.
The fields for additional information and its subsequent storage. To pass N parameters, a request must contain N params tags, where the name attribute contains the name of a parameter and the value attribute contain its value:

	Name
	Type
	Mandatory
	Description

	name
	AN..20
	yes
	Name of the additional parameter

	value
	AN..1024
	yes
	Value of the additional parameter

These fields can be passed to the Bank processing system to be subsequently displayed in the registers.*

Enabling the functionality is possible upon agreement with the Bank during the integration period.
	On payments for housing and utilities services it is necessary to pass the following additional parameters:
· payment_doc_id - the identifier of the payment document;
· order_num - the order number.

If sending notifications to customers is set up for a merchant, the email address of a customer must be passed in this tag in the email parameter.

	clientId
	AN..255
	no
	Identifier of the customer in the store system. This parameter is used for the binding functionality. It can be present if creating bindings is allowed for the store.

	Specifying this parameter when processing payments with the use of bindings is mandatory. Otherwise, a payment will be unsuccessful.

	merchantLogin
	AN..255
	no
	To register an order on behalf of a child merchant, specify the merchant login in this parameter.

	features
	ANS..255
	no
	Container for the feature parameter, the available values for the parameter are:
AUTO_PAYMENT - if the order registration request initiates executing auto-payments.
VERIFY - If this parameter is specified after the order registration request, the cardholder is to be verified without debiting funds from the cardholder account. Thus it is possible to pass a zero amount in the request. This verification allow the merchant to ensure that a card is used by the cardholder and to debit this card in the future without verifying authentication data (CVC, 3D-Secure) on processing subsequent payments.

	The details of passing the VERIFY value
· Even if the payment amount is to be passed in the request, it will not be debited from the account.
· After the order has been successfully registered, it is passed to the REVERSED (cancelled) status.

Example:
	<features>
 <feature>AUTO_PAYMENT</feature>
</features>

* By default, the following fields are passed to the Bank processing system:
·
·
· orderNumber – the order number in the store system;
· description – the order description (no more than 99 symbols, it is forbidden to use %, +, an end of line \r and line break \n).
If the additional parameter merchantOrderId is passed in an order, its value is to be passed to the processing system of the Bank as an order number (instead of the value in the orderNumber field).
Response parameters:
	Name
	Type
	Mandatory
	Description

	orderId
	ANS36
	no
	Identifier of the order in the payment system. It is unique within the system. The identifier is missing if the order registration failed due to an error detailed in errorCode.

	formUrl
	AN..512
	no
	URL of the payment form to which the customer's browser is to be redirected. The URL is not returned if the registration of the order fails due to an error detailed in errorCode.

	errorCode
	N3
	no
	Error code.

	errorMessage
	AN..512
	no
	Error description in the language passed in the language parameter in the request.

Error codes (the errorCode field):
	Value
	Description

	0
	The request has been processed without system errors.

	1
	Unknown order ID

	1
	An order with this identifier has already been processed

	3
	Unknown currency

	4
	Amount is missing

	4
	Order number cannot be empty

	4
	Return URL cannot empty

	5
	Wrong value for one the parameters

	5
	Access denied

	5
	The user must change the password

	7
	System error

	13
	Using both values, Features FORCE_TDS/FORCE_SSL and AUTO_PAYMENT, is not allowed

	13
	The merchant does not have the permission to process auto-payments

	13
	The merchant does not have the permission to process verification payments

	14
	Features are specified incorrectly

Request example:
	<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:mer="http://engine.paymentgate.ru/webservices/merchant">
 <soapenv:Header/>
 <soapenv:Body>
 <mer:registerOrder>
 <order merchantOrderNumber="78ds901234567890" description=" " amount="15000" currency=" " language=" " pageView="MOBILE" sessionTimeoutSecs=" " bindingId=" " expirationDate="2014-09-08T14:14:14">
 <returnUrl>https://web.rbsuat.com/ab/finish.html</returnUrl>
 <params name="param1" value="valueParam1"/>
 <params name="param2" value="valueParam2"/>
 <clientId>666</clientId>
 <merchantLogin> </merchantLogin>
 <features>
 <feature>AUTO_PAYMENT</feature>
 </features>
 </order>
 </mer:registerOrder>
 </soapenv:Body>
 </soapenv:Envelope>

Response example:
	<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns1:registerOrderResponse xmlns:ns1="http://engine.paymentgate.ru/webservices/merchant">
 <return orderId="05fcbc62-7ee6-4f1a-b3d5-6ca41a982283" errorCode="0" errorMessage="Success">
 <formUrl> https://web.rbsuat.com/ab/mobile_payment_ru.html?mdOrder=05fcbc62-7ee6-4f1a-b3d5-6ca41a982283 </formUrl>
 </return>
 </ns1:registerOrderResponse>
 </soap:Body>
 </soap:Envelope>

[bookmark: scroll-bookmark-198][bookmark: _Toc256000081][bookmark: scroll-bookmark-116]Registration request for orders with pre-authorization
The order pre-authorization request is called registerOrderPreAuth. It is used to register an order in the case of a two-phase payment scheme.

Request examples:
	Name
	Type
	Mandatory
	Description

	merchantOrderNumber
	ANS..32
	yes
	Identifier of an order in the store system, it is unique for each store within the system

	description
	ANS..512
	no
	Description of the order in any format

	amount
	N..20
	yes
	Payment amount in the minor denomination (cents or kopeks)

	currency
	N3
	no
	ISO 4217 code of the payment currency. If this parameter is not specified, it is considered to be equal to the default currency code.

	language
	A2
	no
	Language in the ISO 639-1 encoding. If this parameter is not specified, the default language specified in the store settings is to be used.

	pageView
	ANS..20
	no
	By the value of this parameter, it is defined what pages of the payment interface are to be loaded for the customer. The possible values are:
· DESKTOP – to load pages the layout of which is designed to be displayed on displays of PCs (a search for pages with the payment_<locale>.html and errors_<locale>.htmlnames will be executed in the archive of payment interface pages);
· MOBILE – to load pages the layout of which is designed to be displayed on displays of mobile devices (a search for pages with the mobile_payment_<locale>.html and mobile_errors_<locale>.html names will be carried out in the archive of payment interface pages);

· If a store has created payment interface pages with arbitrary prefixes added to the names of page files, pas the value of the necessary prefix in the pageView parameter to load corresponding pages. For example on passing the iphone value, a search will be carried out in the archive of payment interface pages for pages with the iphone_payment_<locale>.html and iphone_error_<locale>.html names.
Where:
locale – the language of the page in ISO 639-1. For example, ru for Russian or en for English.
If a parameter is missing or does not match the format, it is considered that by default pageView=DESKTOP.

	sessionTimeoutSecs
	N...9
	no
	Order lifetime in seconds.
If the parameter is not specified, the value specified in the merchant settings or the default value (1200 seconds = 20 minutes) will be used.
If the expirationDateparameter is present in the request, the value of the sessionTimeoutSecs parameter is ignored.

	bindingId
	AN..255
	no
	Identifier of the binding created earlier. It can be used only if the store has the permission to work with bindings. If this parameter is passed in the given request, it means that:
1. The given order can be paid only using a binding;
2. The payer will be redirected to the payment page on which only entering CVC is required.

	expirationDate
	ANS
	no
	The date and time of the order lifetime expiration. The format used: yyyy-MM-dd'T'HH:mm:ss.
If this parameter is not passed in the request, sessionTimeoutSecs is used to define the date and time of the order lifetime expiration.

	returnUrl
	AN..512
	yes
	The address to which the user is to be redirected in case of a successful payment. The address must be specified in full including the protocol used (for example, https://test.ru instead of test.ru). Otherwise, the user will be redirected to the address of the following type: http://<payment_gateway_address>/<merchant_address>.

	failUrl
	AN..512
	no
	The address to which the user is to be redirected in case of an unsuccessful payment. The address must be specified in full including the protocol used (for example, https://test.ru instead of test.ru). Otherwise, the user will be redirected to the address of the following type http://<payment_gateway_address>/<merchant_address>.

	params
	
	no
	
Tag containing attributes to pass additional parameters of the merchant.
The fields for additional information and its subsequent storage. To pass N parameters, a request must contain N params tags, where the name attribute contains the name of a parameter and the value attribute contain its value:

	Name
	Type
	Mandatory
	Description

	name
	AN..20
	yes
	Name of the additional parameter

	value
	AN..1024
	yes
	Value of the additional parameter

These fields can be passed to the Bank processing system to be subsequently displayed in the registers.*

Enabling this functionality is possible upon agreement with the Bank during the integration period. If sending notifications to customers is set up for the merchant, the customer's email address must be passed in this tag in the email parameter.

	clientId
	AN..255
	no
	Identifier of the customer in the store system. This parameter is used for the binding functionality. It can be present if creating bindings is allowed for the store.

	Specifying this parameter when processing payments with the use of bindings is mandatory. Otherwise, a payment will be unsuccessful.

	merchantLogin
	AN..255
	no
	To register an order on behalf of a child merchant, specify the merchant login in this parameter.

	features
	ANS..255
	no
	Container for the feature parameter, the available values for the parameter are:
AUTO_PAYMENT - if the order registration request initiates executing auto-payments.
VERIFY - If this parameter is specified after the order registration request, the cardholder is to be verified without debiting funds from the cardholder account. Thus it is possible to pass a zero amount in the request. This verification allow the merchant to ensure that a card is used by the cardholder and to debit this card in the future without verifying authentication data (CVC, 3D-Secure) on processing subsequent payments.

	The details of passing the VERIFY value
· Even if the payment amount is to be passed in the request, it will not be debited from the account.
· After the order has been successfully registered, it is passed to the REVERSED (cancelled) status.

Example:
	<features>
 <feature>AUTO_PAYMENT</feature>
</features>

* By default, the following fields are passed to the Bank processing system:
·
·
· orderNumber – the order number in the store system;
· description – the order description (no more than 99 symbols, it is forbidden to use %, +, an end of line \r and line break \n).
If the additional parameter merchantOrderId is passed in an order, its value is to be passed to the processing system of the Bank as an order number (instead of the value in the orderNumber field).
Response parameters:
	Name
	Type
	Mandatory
	Description

	orderId
	ANS36
	no
	Identifier of the order in the payment system. It is unique within the system. The identifier is missing if the order registration failed due to an error detailed in errorCode.

	formUrl
	AN..512
	no
	URL of the payment form to which the customer's browser is to be redirected. The URL is not returned if the registration of the order fails due to an error detailed in errorCode.

	errorCode
	N3
	no
	Error code.

	errorMessage
	AN..512
	no
	Error description in the language passed in the language parameter in the request.

Error codes (the errorCode field):
	Value
	Description

	0
	The request has been processed without system errors.

	1
	Unknown order ID

	1
	An order with this identifier has already been processed

	3
	Unknown currency

	4
	Amount is missing

	4
	Order number cannot be empty

	4
	Return URL cannot empty

	5
	Payments using pre-authorization are forbidden

	5
	Incorrect value for one of the parameters

	5
	Access denied

	5
	The user must change the password

	7
	System error

	13
	Using both values, Features FORCE_TDS/FORCE_SSL and AUTO_PAYMENT, is not allowed

	13
	The merchant does not have the permission to process auto-payments

	13
	The merchant does not have the permission to process verification payments

	14
	Features are specified incorrectly

Request example:
	<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:mer="http://engine.paymentgate.ru/webservices/merchant">
 <soapenv:Header/>
 <soapenv:Body>
 <mer:registerOrderPreAuth>
 <order merchantOrderNumber="asuaakdfadsfasdfasdd5" description=" " amount="10000" currency=" " language="ru" pageView="DESKTOP" bindingId=" " sessionTimeoutSecs=" ">
 <returnUrl>https://web.rbsuat.com/ab/finish.html</returnUrl>
 <params name="param1" value="paramValue1"/>
 <params name="param2" value="paramValue2"/>
 <clientId>7777</clientId>
 <merchantLogin> </merchantLogin>
 <features>
 <feature>AUTO_PAYMENT</feature>
 </features>
 </order>
 </mer:registerOrderPreAuth>
 </soapenv:Body>
 </soapenv:Envelope>

Response example:
	<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns1:registerOrderPreAuthResponse xmlns:ns1="http://engine.paymentgate.ru/webservices/merchant">
 <return orderId="5e5dc6bd-dee3-4c96-849a-09f3f575f4b6" errorCode="0" errorMessage="Success">
 <formUrl> https://web.rbsuat.com/ab/payment_ru.html?mdOrder=5e5dc6bd-dee3-4c96-849a-09f3f575f4b6 </formUrl>
 </return>
 </ns1:registerOrderPreAuthResponse>
 </soap:Body>
 </soap:Envelope>

[bookmark: scroll-bookmark-200][bookmark: _Toc256000082][bookmark: scroll-bookmark-117]Order payment completion request
To debit an earlier pre-authorized order, the depositOrder request is used. This operation can be executed provided that you have the corresponding permissions in the system.

Request examples:
	Name
	Type
	Mandatory
	Description

	orderId
	ANS36
	yes
	Identifier of the order in the payment system. It is unique within the system.

	depositAmount
	N..5
	yes
	The amount to be debited in the order currency. The amount can be less or equal to the pre-authorization amount. The amount cannot be less that one rouble.

	language
	A2
	no
	Language in the ISO 639-1 encoding. If this parameter is not specified, it is considered that the language is Russian. An error message will be returned in this language.

Response parameters:
	Name
	Type
	Mandatory
	Description

	errorCode
	N3
	no
	Error code.

	errorMessage
	AN..512
	no
	Error description in the language passed in the Language parameter of the request.

ATTENTION: If not to specify the amount parameter, the operation will be completed for the whole pre-authorization amount.

Error codes (the errorCode fields):
	Value
	Description

	0
	The request has been processed without system errors.

	5
	The deposit amount exceeds the amount put on hold

	5
	The deposit amount must be more than zero and not less than one rouble

	5
	Access denied

	5
	The user must change the password

	6
	Unknown order ID

	6
	[orderId] is not specified

	7
	Payment must be in the correct status

	7
	System error

Request example:
	<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:mer="http://engine.paymentgate.ru/webservices/merchant">
 <soapenv:Header/>
 <soapenv:Body>
 <mer:depositOrder>
 <order language="ru" orderId="4302d369-a5e8-4432-a5e5-42acfab52c86" depositAmount="30000">
 <!- Zero or more repetitions: ->
 <params name="?" value="?"/>
 </order>
 </mer:depositOrder>
 </soapenv:Body>
 </soapenv:Envelope>

Response example:
	<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns1:depositOrderResponse xmlns:ns1="http://engine.paymentgate.ru/webservices/merchant">
 <return errorCode="6" errorMessage="Unknown order id"/>
 </ns1:depositOrderResponse>
 </soap:Body>
 </soap:Envelope>

[bookmark: scroll-bookmark-182][bookmark: _Toc256000083][bookmark: scroll-bookmark-118]Order status request
To request the status of a registered order, the getOrderStatus request is used.
The order status must be defined by the value of the orderStatus parameter.
The authCode field is obsolete.
Request examples:
	Name
	Type
	Mandatory
	Description

	orderId
	ANS36
	yes
	Identifier of the order in the payment system. It is unique within the system.

	language
	A2
	no
	Language in the ISO 639-1 encoding. If this parameter is not specified, it is considered that the language is Russian. An error message will be returned in this language.

Response parameters:
	Name
	Type
	Mandatory
	Description

	orderStatus
	N2
	no
	The status of the order in the payment system is defined by the value of this parameter. The list of available values is presented in the table below. It is missing if the order has not been found.

	errorCode
	N3
	no
	Error code.

	errorMessage
	AN..512
	no
	Error description in the language passed in the Language parameter of the request.

	orderNumber
	AN..32
	yes
	Order identifier in the store system

	pan
	N..19
	no
	Masked number of the card that has been used for the payment. This parameter is to be specified only after the order has been paid.

	expiration
	N6
	no
	Card expiration . This parameter is to be specified only after the order has been paid.

	cardholderName
	A..64
	no
	Name of the cardholder. This parameter is to be specified only after the order has been paid.

	amount
	N..20
	yes
	Payment amount in the minor denomination (cents or kopeks)

	currency
	N3
	no
	ISO 4217 code of the payment currency. If the code is not specified, the default value is 810 (Russian roubles).

	approvalCode
	AN6
	no
	Code of the IPS authorization. The length of the field is fixed (six symbols), it can contain digits and Latin letters.

	authCode
	N3
	no
	This field is obsolete. Its value is always equal to"2" regardless the order status and the authorization code of the processing system.

	ip
	NS..15
	no
	IP address of the user who has paid the order

	date
	ANS
	yes
	Order registration date

	orderDesctiption
	AN..512
	yes
	Order description passed on its registration

	actionCodeDesctiption
	AN..512
	yes
	Explanation of the response code in the language passed in the Language parameter of the request.

	clientId
	AN..255
	no
	Identifier of the customer in the store system passed on the order registration. This parameter is present only if a store has the permission to create bindings.

	bindingId
	AN..255
	no
	Identifier of a binding created on an order payment or used to pay for an order. This parameter is present only if a store has the permission to create bindings.

The orderStatus field can have the following values:
	Status number
	Description

	0
	The order has been registered but not paid

	1
	The pre-authorized amount has been put on hold (for two-phase payments)

	2
	Full authorization of the order amount has been performed

	3
	Authorization is cancelled

	4
	A refund operation has been processed for the transaction

	5
	Authorization through ACS of the issuing bank has been initiated

	6
	Authorization is declined

Error codes (the errorCode field):
	Value
	Description

	0
	The request has been processed without system errors.

	2
	Payment is declined

	5
	Access denied

	5
	The user must change the password

	5
	[orderId] is not specified

	6
	Unknown order ID

	7
	System error

Request example:
	<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:mer="http://engine.paymentgate.ru/webservices/merchant">
 <soapenv:Header/>
 <soapenv:Body>
 <mer:getOrderStatus>
 <order orderId="b1221b79-5703-42c9-a4b1-ed0d0f36493e" language="ru"/>
 </mer:getOrderStatus>
 </soapenv:Body>
 </soapenv:Envelope>

Response example:
	<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns1:getOrderStatusResponse xmlns:ns1="http://engine.paymentgate.ru/webservices/merchant">
 <return orderStatus="2" errorCode="0" orderNumber="456789012345678" pan="411111**1111" expiration="201512" cardholderName="Ivan" amount="15000" currency="810" approvalCode="123456" uthCode="2" ip="212.5.125.194" date="2013-09-03T16:48:52.459+04:00" orderDescription=" " actionCodeDescription="The request has been successfully processed" clientId="666" bindingId="df0b1801-a754-4576-b174-c2485d98bc9b"/>
 </ns1:getOrderStatusResponse>
 </soap:Body>
 </soap:Envelope>

[bookmark: scroll-bookmark-184][bookmark: _Toc256000084][bookmark: scroll-bookmark-119]Extended order status request
To request the status of a registered order, the getOrderStatusExtended request is used.

Request examples:
	Name
	Type
	Mandatory
	Description

	orderId
	ANS36
	yes*
	Order identifier in the payment system. It is unique within the system.

	language
	A2
	no
	Language in the ISO 639-1 encoding. If this parameter is not specified, it is considered that the language is Russian. An error message will be returned in this language.

	merchantOrderNumber
	ANS..32
	yes*
	Order identifier in the store system.

* It is necessary to pass either the orderId ormerchantOrderNumber parameter in the request. If both parameters are passed, orderId has a higher priority.
Several sets of response parameters exist. It depends of the version of getOrderStatusExtended specified in the merchant settings, what sets of parameters are to be returned.
	Name
	Type
	Mandatory
	Description
	Version of getOrderStatusExtended

	orderNumber
	AN..32
	yes
	Order identifier in the store system.
	All versions.

	orderStatus
	N2
	no
	The order status in the payment system is defined by the value of this parameter. The available values are: given in the list below. It is missing if the order has not been found.
· 0 - the order is registered, but not paid;
· 1 - the pre-authorized amount is put on hold (for two-phase payments);
· 2 - a full authorization of the order amount has been performed;
· 3 - the authorization was cancelled;
· 4 - a refund operation has been processed for the transaction;
· 5 - an authorization through ACS of the issuing bank has been initiated;
· 6 - the authorization was declined

	All versions.

	actionCode
	N3
	yes
	Response code.
	All versions.

	actionCodeDescription
	AN..512
	yes
	Explanation of the response code in the language passed in the Language parameter of the request.
	All versions.

	errorCode
	N3
	no
	Error code. The following values are available.
· 0 - the request has been processed without system errors.;

· 1 - [orderid] or [ordernumber] is expected;

· 5 - access denied;

· 5 - the user must change the password;

· 6 - order is not found;

· 7 - a system error.

	All versions.

	errorMessage
	AN..512
	no
	Error description in the language passed in the Language parameter of the request.
	All versions.

	amount
	N..20
	yes
	Payment amount in the minor denomination (cents or kopeks)
	All versions.

	currency
	N3
	no
	ISO 4217 code of the payment currency. If the code is not specified, the default value is 810 (Russian roubles).
	All versions.

	date
	ANS
	yes
	Order registration date.
	All versions.

	orderDescription
	AN..512
	no
	Order description passed on its registration
	All versions.

	ip
	AN..20
	yes
	IP-address of the buyer.
	All versions.

	
The merchantOrderParams element is present in a response if an order contains additional parameters of the merchant. Each additional parameter of an order is present in a separate merchantOrderParams element.

	name
	AN..20
	no
	Name of the additional parameter
	All versions.

	value
	AN..1024
	no
	Value of the additional parameter
	All versions.

	

The cardAuthInfo element contains a structure that consists of a list of the secureAuthInfo element and the following parameters:

	maskedPan
	N..19
	no
	Masked number of the card that has been used for the payment. This parameter is to be specified only after the order has been paid.
	All versions.

	expiration
	N6
	no
	Card expiration . This parameter is to be specified only after the order has been paid.
	All versions.

	cardholderName
	A..64
	no
	Name of the cardholder. This parameter is to be specified only after the order has been paid.
	All versions.

	approvalCode
	AN6
	no
	Payment authorization code. The field has a fixed length (six symbols), it can contain digits and Latin letters. The parameter is specified only after the order has been paid.
	All versions.

	chargeback
	A..5
	no
	The parameter defines whether the funds have been forcibly returned to the buyer by the bank. The available values are:
· true (the funds have been refunded);
· false (the funds have not been refunded).

	06 and higher.

	paymentSystem
	N..10
	yes
	The payment system name. The available values are:
· VISA;
· MASTERCARD;
· AMEX;
· JCB;
· CUP;
· MIR.

	08 and higher.

	product
	AN..255
	yes
	Additional details on corporate cards. These details are filled in by the technical support service through the administrative console. If such details are missing, an empty value is returned.
	08 and higher.

	paymentWay
	AS..14
	yes
	The method of order completion (a payment with entering card data, a payment using a binding, etc.).
	09 and higher.

	

The secureAuthInfo element (the element consists of the eci and threeDSInfo elements that are the lists of the cavv and xid parameters):

	eci
	N..4
	no
	Electronic Commerce Indicator. The indicator is specified only after an order has been paid and in case the corresponding permission is present.
	All versions.

	cavv
	ANS..200
	no
	The value for the cardholder and card authentication check. The indicator is specified only after an order has been paid and in case the corresponding permission is present.
	All versions.

	xid
	ANS..80
	no
	Electronic Commerce Indicator of the transaction. The indicator is specified only after an order has been paid and in case the corresponding permission is present.
	All versions.

	

The bindingInfo element consists of these parameters:

	clientId
	AN..255
	no
	Identifier of the customer in the store system passed on the order registration. This parameter is present only if a store has the permission to create bindings.
	All versions.

	bindingId
	AN..255
	no
	Identifier of a binding created on an order payment or used to pay for an order. This parameter is present only if a store has the permission to create bindings.
	All versions.

	authDateTime
	ANS
	no
	The authorization date and time.
	02 and higher.

	authRefNum
	AN..24
	no
	Reference number.
	02 and higher.

	terminalId
	AN..10
	no
	Terminal ID.
	02 and higher.

	The paymentAmountInfo element consists of these parameters:

	approvedAmount
	N..20
	no
	The amount put on hold on the card (is used only for two-phase payments).
	03 and higher.

	depositedAmount
	N..20
	no
	The amount confirmed for debiting from the card.
	03 and higher.

	refundedAmount
	N..20
	no
	The refund amount.
	03 and higher.

	paymentState
	A..10
	no
	The order status.
	03 and higher.

	feeAmount
	N..20
	no
	The fee amount.
	11 and higher.

	The bankInfo element consists of these parameters:

	bankName
	AN..200
	no
	Name of the issuing bank.
	03 and higher.

	bankCountryCode
	AN..4
	no
	Country codes of the issuing bank.
	03 and higher.

	bankCountryName
	AN..160
	no
	Name of the country of the issuing bank passed in the language parameter of the request or in the language of the user who has called the method if the language has not been specified in the request.
	03 and higher.

Request example:
	<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:mer="http://engine.paymentgate.ru/webservices/merchant">
 <soapenv:Header/>
 <soapenv:Body>
 <mer:getOrderStatusExtended>
 <order orderId="942e8534-ac73-4e3c-96c6-f6cc448018f7" language="ru">
 <!--Optional:-->
 <merchantOrderNumber> </merchantOrderNumber>
 </order>
 </mer:getOrderStatusExtended>
 </soapenv:Body>
 </soapenv:Envelope>

Response example:
	<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns1:getOrderStatusExtendedResponse xmlns:ns1="http://engine.paymentgate.ru/webservices/merchant">
 <return orderNumber="00000123" orderStatus="2" actionCode="0" actionCodeDescription="" amount="10000" currency="810" date="2016-12-20T18:48:49.590+03:00" ip="10.7.5.21" errorCode="0" errorMessage="Success">
 <attributes name="mdOrder" value="08c87ec5-399d-49d0-85ed-85c94bb26675"/>
 <cardAuthInfo maskedPan="555555**5599" expiration="201912" cardholderName="asd asd" approvalCode="123456" paymentSystem="MASTERCARD" product="DEBIT">
 <secureAuthInfo>
 <eci>1</eci>
 </secureAuthInfo>
 </cardAuthInfo>
 <authDateTime>2016-12-20T18:52:16.276+03:00</authDateTime>
 <terminalId>000001</terminalId>
 <authRefNum>111111111111</authRefNum>
 <paymentAmountInfo paymentState="DEPOSITED" approvedAmount="10000" depositedAmount="10000" refundedAmount="0"/>
 <bankInfo bankName="Unated State Bank of Atlanta" bankCountryCode="US" bankCountryName="The Unated States of America"/>
 <chargeback>false</chargeback>
 <paymentWay>CARD</paymentWay>
 </return>
 </ns1:getOrderStatusExtendedResponse>
 </soap:Body>
</soap:Envelope>

[bookmark: scroll-bookmark-186][bookmark: _Toc256000085][bookmark: scroll-bookmark-120]Order payment cancellation request
To cancel an order, the reverseOrder request is used. The cancellation function is available within a limited time period after a payment has been processed. The exact duration should be found out from the bank.

The cancellation operation can be executed only once. If it ends with an error, a repetitive cancellation operation will not be processed.
This functionality is available for a merchant upon agreement with the Bank. To execute a cancellation operation, a user needs to have the corresponding permissions.
Request examples:
	Name
	Type
	Mandatory
	Description

	orderId
	ANS36
	yes
	Identifier of the order in the payment system. It is unique within the system.

	language
	A2
	no
	Language in the ISO 639-1 encoding. If this parameter is not specified, it is considered that the language is Russian. An error message will be returned in this language.

Response parameters:
	Name
	Type
	Mandatory
	Description

	errorCode
	N3
	no
	Error code.

	errorMessage
	AN..512
	no
	Error description in the language passed in the Language parameter of the request.

Error codes (the errorCode fields):
	Value
	Description

	0
	The request has been processed without system errors.

	5
	Access denied

	5
	The user must change the password

	5
	[orderId] is not specified

	6
	Unknown order ID

	7
	Invalid operation for the current status of the order

	7
	System error

Request example:
	<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:mer="http://engine.paymentgate.ru/webservices/merchant">
 <soapenv:Header/>
 <soapenv:Body>
 <mer:reverseOrder>
 <order language="ru" orderId="f88a2bbf-2021-4ccc-8783-8a13068a89f9">
 <!- Zero or more repetitions: ->
 <params name=" " value=" "/>
 </order>
 </mer:reverseOrder>
 </soapenv:Body>
 </soapenv:Envelope>

Response example:
	<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns1:reverseOrderResponse xmlns:ns1="http://engine.paymentgate.ru/webservices/merchant">
 <return errorCode="7" errorMessage="Invalid operation for the current order status"/>
 </ns1:reverseOrderResponse>
 </soap:Body>
 </soap:Envelope>

[bookmark: scroll-bookmark-188][bookmark: _Toc256000086][bookmark: scroll-bookmark-121]Order payment refund request
To refund funds, the refundOrder request is used.

Upon this request, the funds for the specified order are to be returned to the payer. The request will end with an error if the funds have not been debited for this order. The system permits returning funds more than once, but for a total amount not exceeding the initial debit amount.
	When processing a refund for a payment for housing and utilities services, only a full refund is available.

To process a refund operation, it is necessary to have the corresponding permissions in the system.
Request examples:
	Name
	Type
	Mandatory
	Description

	orderId
	ANS36
	yes
	Identifier of the order in the payment system. It is unique within the system.

	refundAmount
	N..5
	yes
	The refund amount in the order currency. The amount can be equal to or less than the order remaining amount.

	language
	A2
	no
	Language in the ISO 639-1 encoding. If this parameter is not specified, it is considered that the language is Russian. An error message will be returned in this language.

Response parameters:
	Name
	Type
	Mandatory
	Description

	errorCode
	N3
	no
	Error code.

	errorMessage
	AN..512
	no
	Error description in the language passed in the Language parameter of the request.

Error codes (the errorCode fields):
	Value
	Description

	0
	The request has been processed without system errors.

	5
	Access denied

	5
	The user must change the password

	5
	[orderId] is not specified

	5
	Incorrect amount

	6
	Unknown order ID

	7
	Payment must be in the correct status

	7
	The refund amount exceeds the debited amount

	7
	System error

Request example:
	<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:mer="http://engine.paymentgate.ru/webservices/merchant">
 <soapenv:Header/>
 <soapenv:Body>
 <mer:refundOrder>
 <order language="ru" orderId="4302d369-a5e8-4432-a5e5-42acfab52c86" refundAmount="20000">
 <!--Zero or more repetitions:-->
 <params name=" " value=" "/>
 </order>
 </mer:refundOrder>
 </soapenv:Body>
 </soapenv:Envelope>

Response example:
	<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns1:refundOrderResponse xmlns:ns1="http://engine.paymentgate.ru/webservices/merchant">
 <return errorCode="7" errorMessage="The refund amount exceeds the debited amount/>
 </ns1:refundOrderResponse>
 </soap:Body>
 </soap:Envelope>

[bookmark: scroll-bookmark-190][bookmark: _Toc256000087][bookmark: scroll-bookmark-122]Request for checking a card for 3D-Secure enrolment
The verifyEnrollment request is used to check a card for enrolment to 3D-Secure.
Request examples:
	Name
	Type
	Mandatory
	Description

	pan
	N12...19
	yes
	Card number

Response parameters:
	Name
	Type
	Mandatory
	Description

	errorCode
	N3
	no
	Error code.

	errorMessage
	AN..512
	no
	Error description.

	isEnrolled
	A1
	no
	The flag signifying enrolment of the card to 3D-Secure. The available values are: Y, N, U.

	emitterName
	AN..160
	no
	Name of the issuing bank.

	emitterCountryCode
	AN..4
	no
	Country codes of the issuing bank.

Error codes (the ErrorCode field):
	Value
	Description

	0
	The request has been processed without system errors.

	1
	The card number is not specified

	1
	The card number must be a number containing 13 to 19 digits

	5
	Access denied

	5
	The user must change the password

	6
	No information is found for the specified card number

	7
	System error

Request example:
	<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:mer="http://engine.paymentgate.ru/webservices/merchant">
 <soapenv:Header/>
 <soapenv:Body>
 <mer:verifyEnrollment>
 <pan>4111111111111111</pan>
 </mer:verifyEnrollment>
 </soapenv:Body>
 </soapenv:Envelope>

Response example:
	<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns1:verifyEnrollmentResponse xmlns:ns1="http://engine.paymentgate.ru/webservices/merchant">
 <return isEnrolled="Y" emitterName="TEST CARD" emitterCountryCode="RU" errorCode="0"/>
 </ns1:verifyEnrollmentResponse>
 </soap:Body>
 </soap:Envelope>

[bookmark: scroll-bookmark-192][bookmark: _Toc256000088][bookmark: scroll-bookmark-123]Request for adding additional parameters to an order
The addParams method is used to add additional parameters to an order.
If an additional parameter already exists in the order, the value most recently passed is saved to the order when adding a parameter with the same name.
Request examples:
	Name
	Type
	Mandatory
	Description

	orderId
	ANS36
	yes
	Identifier of the order in the payment system. It is unique within the system.

	The additional parameters block - params:
	
	
	

	name
	AN..20
	yes
	Name of the additional parameter

	value
	AN..1024
	yes
	Value of the additional parameter

Response parameters
	Name
	Type
	Mandatory
	Description

	errorCode
	N3
	yes
	Error code.

	errorMessage
	AN..512
	no
	Error description. It is missing when a request is processed unsuccessfully.

Error codes (the ErrorCode field):
	Value
	Description

	0
	The request has been processed without system errors.

	5
	Access denied

	5
	The user must change the password

	6
	orderId is not specified

	6
	Unknown order ID

	7
	System error

Request example:
	<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:mer="http://engine.paymentgate.ru/webservices/merchant">
 <soapenv:Header/>
 <soapenv:Body>
 <mer:addParams>
 <request orderId="02988563-0cc4-4109-84ed-15781f0d718e">
 <!--Zero or more repetitions:-->
 <params name="Param1" value="Param1"/>
 <params name="Param2" value="Param2"/>
 </request>
 </mer:addParams>
 </soapenv:Body>
</soapenv:Envelope>

Response example:
	<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns1:addParamsResponse xmlns:ns1="http://engine.paymentgate.ru/webservices/merchant">
 <return errorCode="0"/>
 </ns1:addParamsResponse>
 </soap:Body>
</soap:Envelope>

[bookmark: scroll-bookmark-194][bookmark: _Toc256000089][bookmark: scroll-bookmark-124]Request for payments statistics for a period
The getLastOrdersForMerchants method allows you to get the payment statistics for a particular period.

Request examples:
	Name
	Type
	Mandatory
	Description

	language
	A2
	no
	Language in the ISO 639-1 encoding. If this parameter is not specified, it is considered that the language is Russian. An error message will be returned in this language.

	page
	N
	no
	When processing the request, a list is formed that is broken down into pages (with the number of records on each page equal to size). A page with the number that was specified in the page parameter is returned in the response. The pages numbering starts from 0.
If the parameter is not specified, a page with the number 0 is returned.

	size
	N..3
	yes
	Number of elements on a page (the maximum value = 200).

	c
	ANS
	yes
	The date and time of the beginning of the period for which the orders to be collected, in the format YYYY-MM-DDTHH:mm:ss.

	по
	ANS
	yes
	Date and time of the ending of the period for which the orders to be collected, in the format YYYY-MM-DDTHH:mm:ss.

	transactionStates
	A..9
	yes
	In this block, it is necessary to list the required order statuses. Only orders in one of the specified statuses are included into the report. The available values are: CREATED, APPROVED, DEPOSITED, DECLINED, REVERSED, REFUNDED.

	merchants
	ANS
	yes
	List of logins of the merchant whose transactions are included into the report.
Leave this block empty to get a list of reports on all available merchants (child merchants and merchants specified in the user's settings).

	searchByCreatedDate
	boolean
	no
	The possible values are:
· true – a search for orders that have the creation date that falls into the specified period.
· false – a search for orders that have the payment date that falls into the specified period (thus, orders in the CREATED or DECLINED status cannot be present in the report).
The default value is false.

Response parameters:
	Name
	Type
	Mandatory
	Description

	errorCode
	N..2
	yes
	Error code. The description of the available codes is presented below in the Error codes (the errorCode field) table

	errorMessage
	AN..512
	no
	Error description. It is present only an error is present (errorCode is not equal to 0).

	orderStatuses
	
	
	Blocks that contain the information on the orders included into the report. See the orderStatuses block parameters table below.

	totalCount
	N
	yes
	Total number of elements in the report (on all pages).

	page
	N
	yes
	Number of the current page (it is equal to the page number passed in the request).

	pageSize
	N..3
	yes
	Maximum number of records on a page (it is equal to the page number passed in the request).

Parameters of the orderStatuses block:
	Name
	Type
	Mandatory
	Description

	orderNumber
	AN..32
	yes
	Order identifier in the store system.

	orderStatus
	N..2
	yes
	Status of the order in the payment system. The available values are presented in the orderStatus field table below.

	actionCode
	N..3
	yes
	Response code.

	actionCodeDescription
	AN..512
	yes
	Meaning of the response code.

	amount
	N..20
	yes
	Payment amount in the minor denomination of the currency.

	currency
	N3
	yes
	ISO 4217 code of the payment currency. If it is not specified, it is considered to be equal to the default currency value.

	date
	ANS
	yes
	Order registration date.

	orderDescription
	AN..512
	no
	Order description passed on its registration

	ip
	AN..20
	no
	IP-address of the buyer. It is specified only after a payment.

	errorCode
	N..2
	yes
	Error code.

	merchantOrderParams
	
	no
	Tag containing attributes that contain additional merchant parameters. See the merchantOrderParams block parameters table below.

	attributes
	
	yes
	Attributes of the order in the payment system (order number). See the attributes block parameters table below.

	cardAuthInfo
	
	no
	A tag containing the payment attributes. See the cardAuthInfo block parameters table below.

	bindingInfo
	
	no
	Tag containing the information on the binding with which the payment is performed. See the bindingInfo block parameters table below.

	authDateTime
	ANS
	no
	Authorization date and time

	terminalId
	AN..10
	no
	Terminal ID

	authRefNum
	AN..24
	no
	Reference number

	paymentAmountInfo
	
	no
	Tag containing the information on the confirmation amount, debit amount, and refund amount. See the paymentAmountInfo block parameters table below.

	bankInfo
	
	no
	Tag containing the information on the issuing bank. See the bankInfo block parameters table below.

merchantOrderParams block parameters:
	Name
	Type
	Mandatory
	Description

	name
	AN..20
	yes
	Name of the additional merchant parameter

	value
	AN..1024
	yes
	Value of the additional merchant parameter

attributes block parameters:
	Name
	Type
	Mandatory
	Description

	name
	A7
	yes
	Attribute name is "mdOrder".

	value
	ANS36
	yes
	Attribute value is the order number in the payment system (is unique within the system).

cardAuthInfo block parameters:
	Name
	Type
	Mandatory
	Description

	maskedPan
	N..19
	no
	Masked number of the card that has been used for the payment.

	expiration
	N6
	no
	Card expiration .

	cardholderName
	A..64
	no
	Name of the cardholder.

	approvalCode
	AN6
	no
	Payment authorization code. The field has a fixed length (six symbols), it can contain digits and Latin letters.

bindingInfo block parameters:
	Name
	Type
	Mandatory
	Description

	clientId
	AN..255
	no
	Identifier of the customer in the store system.

	bindingId
	AN..255
	no
	Identifier of the binding used for the payment.

paymentAmountInfo block parameters:
	Name
	Type
	Mandatory
	Description

	paymentState
	N..9
	no
	Payment status

	approvedAmount
	N..20
	no
	Amount confirmed to be debited.

	depositedAmount
	N..20
	no
	Amount confirmed debited from the card.

	refundedAmount
	N..20
	no
	The refund amount.

bankInfo block parameters:
	Name
	Type
	Mandatory
	Description

	bankName
	AN..200
	no
	Name of the issuing bank.

	bankCountryCode
	AN..4
	no
	Code of the issuing bank country

	bankCountryName
	AN..160
	no
	Name of the country of the issuing bank passed in the language parameter of the request or in the language of the user who has called the method if the language has not been specified in the request.

The orderStatus field can have the following values:
	Value
	Description

	0
	The order has been registered but not paid

	1
	The pre-authorized amount has been put on hold (for two-phase payments)

	2
	Full authorization of the order amount has been performed

	3
	Authorization is cancelled

	4
	A refund operation has been processed for the transaction

	5
	Authorization through ACS of the issuing bank has been initiated

	6
	Authorization is declined

Error codes (the errorCode field):
	Value
	Description

	0
	The request has been processed without system errors.

	5
	One of the mandatory fields is not filled in

	5
	Incorrect format of the transactionStates parameter

	7
	System error

	10
	Value of the size parameter exceeds the maximum allowed value

	10
	Insufficient permissions to view transactions for the specified merchant

Request example:
	<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:mer="http://engine.paymentgate.ru/webservices/merchant">
 <soapenv:Header/>
 <soapenv:Body>
 <mer:getLastOrdersForMerchants>
 <request language="ru">
 <page>0</page>
 <size>200</size>
 <from>2014-10-10T00:00:00</from>
 <to>2014-11-11T00:00:00</to>
 <transactionStates>
 <transactionStates>DEPOSITED</transactionStates>
 <transactionStates>REVERSED</transactionStates>
 </transactionStates>
 <merchants>
 <merchants>SevenEightNine</merchants>
 </merchants>
 <searchByCreatedDate>false</searchByCreatedDate>
 </request>
 </mer:getLastOrdersForMerchants>
 </soapenv:Body>
 </soapenv:Envelope>

Response example:
	<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns1:getLastOrdersForMerchantsResponse xmlns:ns1="http://engine.paymentgate.ru/webservices/merchant">
 <return errorCode="0">
 <orderStatuses orderNumber="58drs0Pes459Hdsddd0567a0" orderStatus="2" actionCode="0" actionCodeDescription="The request has been successfully processed" amount="250000" currency="810" date="2014-10-28T12:40:49.233+04:00" orderDescription="Opisanie" ip="212.5.125.194" errorCode="0">
 <merchantOrderParams name="registr1" value="registr1"/>
 <attributes name="mdOrder" value="f1a3365b-542c-4c8d-b34c-e9a7ee8dbc9c"/>
 <cardAuthInfo maskedPan="411111**1111" expiration="201512" cardholderName="Ivan" approvalCode="123456"/>
 <bindingInfo clientId="666" bindingId="1eabfb8e-b90e-4dc8-bef6-14bd392b1cec"/>
 <authDateTime>2014-10-28T12:41:01.207+04:00</authDateTime>
 <terminalId>111113</terminalId>
 <authRefNum>111111111111</authRefNum>
 <paymentAmountInfo paymentState="DEPOSITED" approvedAmount="250000" depositedAmount="250000" refundedAmount="0"/>
 <bankInfo bankName="TEST CARD" bankCountryCode="RU" bankCountryName="Russia"/>
 </orderStatuses>
 <orderStatuses orderNumber="57drs0Pes459Hdsddd0567a0" orderStatus="2" actionCode="0" actionCodeDescription="Request processed successfully" amount="250000" currency="810" date="2014-10-28T12:34:37.286+04:00" orderDescription="Opisanie" ip="212.5.125.194" errorCode="0">
 <merchantOrderParams name="registr1" value="registr1"/>
 <attributes name="mdOrder" value="09489184-bc5e-44a7-b6c4-3ca1feb8ef69"/>
 <cardAuthInfo maskedPan="411111**1111" expiration="201512" cardholderName="Ivan" approvalCode="123456"/>
 <bindingInfo clientId="666" bindingId="1eabfb8e-b90e-4dc8-bef6-14bd392b1cec"/>
 <authDateTime>2014-10-28T12:34:56.046+04:00</authDateTime>
 <terminalId>111113</terminalId>
 <authRefNum>111111111111</authRefNum>
 <paymentAmountInfo paymentState="DEPOSITED" approvedAmount="250000" depositedAmount="250000" refundedAmount="0"/>
 <bankInfo bankName="TEST CARD" bankCountryCode="RU" bankCountryName="Russia"/>
 </orderStatuses>
 <totalCount>2</totalCount>
 <page>0</page>
 <pageSize>200</pageSize>
 </return>
 </ns1:getLastOrdersForMerchantsResponse>
 </soap:Body>
 </soap:Envelope>

[bookmark: scroll-bookmark-216][bookmark: _Toc256000090][bookmark: scroll-bookmark-125]Request for a payment through an external payment network
To pay the order through an external processing system the paymentOrderOtherWay request with special parameters is used.
This operation is available provided that the merchant has the corresponding permissions in the system.

Request examples:
	Name
	Type
	Mandatory
	Description

	orderId
	ANS36
	yes
	Order number received on its registration

	paymentWay
	ANS..*
	yes
	Payment method is passed in this parameter. The possible values are:
· ALFA_ALFACLICK – for a payment with "Alfa-click" (through the PayByClik system).
· UPOP – for a payment through the UPOP system, for the holders of the China Union Pay cards.

	ip
	AS..15
	no
	IP-address of the payer

	language
	A2
	no
	Language in the ISO 639-1 encoding. If the language is not specified, the default language specified in the store settings is used

Response parameters:
	Name
	Type
	Mandatory
	Description

	errorCode
	N1
	yes
	Error code

	errorMessage
	ANS..*
	(on an error)
	Error message

	redirect
	ANS..*
	no
	Return address after the payment

Error codes (the errorCode fields):
	Value
	Description

	0
	The request has been processed without system errors.

	1
	[orderId] is not specified

	1
	[paymentWay] is not set

	2
	Order is not found

	5
	Session timeout

	5
	Access denied

	5
	The user must change the password

	5
	paymentWay is incorrect

	5
	System error

Request example:
	<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:mer="http://engine.paymentgate.ru/webservices/merchant">
 <soapenv:Header/>
 <soapenv:Body>
 <mer:paymentOrderOtherWay>
 <order language="ru" orderId="8232a33f-c44f-48ec-b52f-0d63a88c50ae" paymentWay="ALFA_ALFACLICK" ip=" "/>
 </mer:paymentOrderOtherWay>
 </soapenv:Body>
 </soapenv:Envelope>

Response example:
	<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns1:paymentOrderOtherWayResponse xmlns:ns1="http://engine.paymentgate.ru/webservices/merchant">
 <return redirect="http://217.12.96.193/PayByClick/login.xhtml?orderId=4e6b383e-809d-4e7e-9477-956e9c828934&backUrl=http%3A%2F%2Fya.ru%3ForderId%3D4e6b383e-809d-4e7e-9477-956e9c828934" errorCode="0"/>
 </ns1:paymentOrderOtherWayResponse>
 </soap:Body>
</soap:Envelope>

[bookmark: scroll-bookmark-212][bookmark: _Toc256000091][bookmark: scroll-bookmark-126]Request for processing a payment by a binding
To process a payment with a binding, the paymentOrderBinding request is used.

Request examples:
	Name
	Type
	Mandatory
	Description

	mdOrder
	ANS36
	yes
	Identifier of the order in the payment system. It is unique within the system.

	bindingId
	ANS36
	yes
	Identifier of a binding created on an order payment or used to pay for an order. This parameter is present only if a store has the permission to create bindings.

	params
	
	no
	Additional tag containing attributes to pass additional merchant parameters.*

	language
	A2
	no
	Language in the ISO 639-1 encoding. If the language is not specified, the default language specified in the store settings is used

	ip
	NS..15
	yes
	IP-address of the payer

	cvc
	N4
	no
	CVV code.
This parameter is mandatory, if "Can process payments without confirmation of CVC" is not selected for a merchant.

	email
	ANS..*
	no
	Email-address of the payer

* Additional information fields for the subsequent storage. These fields can be passed to the Bank processing system to subsequently be displayed in registers.**
Enabling the functionality is possible upon agreement with the Bank during the integration period. To pass N parameters, a request must contain N Params tags, where the name attribute contains the parameter name and value contains its value:
	Name
	Type
	Mandatory
	Description

	name
	AN..20
	yes
	Name of the additional parameter

	value
	AN..1024
	yes
	Value of the additional parameter

** By default, orderNumber and its description (not more than 99 symbols, it is prohibited to use %, +, end of line \r and line break \n) are passed to the Bank processing system.

Response parameters:
	Name
	Type
	Mandatory
	Description

	redirect
	ANS..*
	no
	On a successful response. In case of an SSL-payment, the redirection URL after a payment. In case of a 3D-Secure payment, the URL to return to ACS.

	info
	ANS..*
	no
	On a successful response. Result of a payment attempt. The available values are presented below:
· Your payment has been processed, redirecting..
· Payment declined. Check the entered data, ensure that there are enough funds on the card. Redirecting...
· The payment cannot be processed. Redirecting...
· Payment declined. Contact the merchant. Redirecting...
· Payment declined. Contact the bank that issued the card. Redirecting...
· Operation is impossible. Cardholder authentication completed unsuccessfully. Redirecting...
· No connection to the bank. Try again later. Redirecting...
· Data entering timeout expiration. Redirecting...
· No response from the bank. Try again later. Redirecting...

	errorCode
	N1
	yes
	Expiration code.

	errorMessage
	ANS..*
	no
	On a response with an error. Error message.

	acsUrl
	ANS..*
	no
	On a successful response in case of a 3D-Secure payment. URL-address of the redirection to ACS

	paReq
	ANS..*
	no
	On a successful response in case of a 3D-Secure payment. Payment Authentication Request.

Error codes (the errorCode field):
	Value
	Description

	0
	The request has been processed without system errors.

	1
	It is necessary to specify the CVC2/CVV2 code because the merchant does not have a permission to process a payment without CVC

	1
	Incorrect format of CVC

	1
	[mdOrder] is not specified

	1
	[bindingId] is not specified

	1
	The email address does not meet the template format

	1
	Incorrect language

	2
	Order is not found

	2
	The binding is not found

	5
	Access denied

	5
	The user must change the password

	5
	The maximum number of payments attempted run out or the session timeout expired

	7
	System error

Request example:
	<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:mer="http://engine.paymentgate.ru/webservices/merchant">
 <soapenv:Header/>
 <soapenv:Body>
 <mer:paymentOrderBinding>
 <order mdOrder="9213bc5f-5d5b-43d6-a408-b6b93cdde992" bindingId="ca91a4ab-b6d4-495d-b606-8fb0114e679e" language="ru" ip="127.0.0.1" cvc="123" email=" ">
 <!-Zero or more repetitions:->
 <params name=" " value=" "/>
 </order>
 </mer:paymentOrderBinding>
 </soapenv:Body>
 </soapenv:Envelope>

Response example:
	 <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns1:paymentOrderBindingResponse xmlns:ns1="http://engine.paymentgate.ru/webservices/merchant">
 <return errorCode="0" info="Your payment has been processed, redirecting..." redirect="http://example.ru?orderId=9213bc5f-5d5b-43d6-a408-b6b93cdde992"/"/>
 </ns1:paymentOrderBindingResponse>
 </soap:Body>
 </soap:Envelope>

[bookmark: scroll-bookmark-206][bookmark: _Toc256000092][bookmark: scroll-bookmark-127]Request for a binding deactivation
The unBindCard request is used to disable an existing active binding.

Request parameters:
	Name
	Type
	Mandatory
	Description

	bindingId
	ANS36
	yes
	Identifier of a binding created on an order payment or used to pay for an order. It is present only if a store has the permission to create bindings.

Response parameters:
	Name
	Type
	Mandatory
	Description

	errorCode
	N1
	yes
	Completion code

	errorMessage
	ANS..*
	(on an error)
	Error message

Error codes (the errorCode fields):
	Value
	Description

	0
	The request has been processed without system errors.

	2
	Incorrect binding status (when attempting to deactivate an inactive binding)

	2
	The binding is not found

	5
	Access denied

	5
	The user must change the password

	7
	System error

Request example:
	<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:mer="http://engine.paymentgate.ru/webservices/merchant">
 <soapenv:Header/>
 <soapenv:Body>
 <mer:unBindCard>
 <bindingId>fd3afc57-c6d0-4e08-aaef-1b7cfeb093dc</bindingId>
 </mer:unBindCard>
 </soapenv:Body>
 </soapenv:Envelope>

Response example:
	<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns1:unBindCardResponse xmlns:ns1="http://engine.paymentgate.ru/webservices/merchant">
 <return errorCode="0" errorMessage="Success"/>
 </ns1:unBindCardResponse>
 </soap:Body>
 </soap:Envelope>

[bookmark: scroll-bookmark-208][bookmark: _Toc256000093][bookmark: scroll-bookmark-128]Request for a binding activation
To activate a binding that has not been deactivated earlier, the bindCard request is used.

Request parameters:
	Name
	Type
	Mandatory
	Description

	bindingId
	ANS36
	yes
	Identifier of a binding created on an order payment or used to pay for an order. It is present only if a store has the permission to create bindings.

Response parameters:
	Name
	Type
	Mandatory
	Description

	errorCode
	N1
	yes
	Completion code

	errorMessage
	ANS..*
	(on an error)
	Error message

Error codes (the errorCode fields):
	Value
	Description

	0
	The request has been processed without system errors.

	2
	Incorrect binding status (when attempting to deactivate an inactive binding)

	2
	The binding is not found

	5
	Access denied

	5
	The user must change the password

	7
	System error

Request example:
	<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:mer="http://engine.paymentgate.ru/webservices/merchant">
 <soapenv:Header/>
 <soapenv:Body>
 <mer:bindCard>
 <bindingId>fd3afc57-c6d0-4e08-aaef-1b7cfeb093dc</bindingId>
 </mer:bindCard>
 </soapenv:Body>
 </soapenv:Envelope>

Response example:
	<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns1:bindCardResponse xmlns:ns1="http://engine.paymentgate.ru/webservices/merchant">
 <return errorCode="5" errorMessage="The user must change the password"/>
 </ns1:bindCardResponse>
 </soap:Body>
 </soap:Envelope>

[bookmark: scroll-bookmark-210][bookmark: _Toc256000094][bookmark: scroll-bookmark-129]Request for changing the validity period of a binding
Use the extendBinding method to change the validity period of a binding.

Request examples:
	Name
	Type
	Mandatory
	Description

	bindingId
	ANS36
	yes
	Identifier of a binding created on an order payment or used to pay for an order. This parameter is present only if a store has the permission to create bindings.

	newExpiry
	N6
	yes
	A new date (the year and month) of the expiration of the validity period, in the format YYYYMM

	language
	А2
	no
	Language in the ISO 639-1 encoding. If the language is not specified, the default language specified in the store settings is used

Response parameters:
	Name
	Type
	Mandatory
	Description

	errorCode
	N1
	yes
	Completion code

	errorMessage
	ANS..*
	(on an error)
	Error message

Error codes (the errorCode fields):
	Value
	Description

	0
	The request has been processed without system errors.

	1
	One (or several) of the mandatory parameters is not specified or is specified incorrectly

	2
	The binding is not found

	5
	Access denied

	5
	The user must change the password

	7
	System error

Request example:
	<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:mer="http://engine.paymentgate.ru/webservices/merchant">
 <soapenv:Header/>
 <soapenv:Body>
 <mer:extendBinding>
 <request language=" " bindingId="1eabfb8e-b90e-4dc8-bef6-14bd392b1cec" newExpiry="201807"/>
 </mer:extendBinding>
 </soapenv:Body>
</soapenv:Envelope>

Response example:
	<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns1:extendBindingResponse xmlns:ns1="http://engine.paymentgate.ru/webservices/merchant">
 <return errorCode="0" errorMessage="Success"/>
 </ns1:extendBindingResponse>
 </soap:Body>
</soap:Envelope>

[bookmark: scroll-bookmark-202][bookmark: _Toc256000095][bookmark: scroll-bookmark-130]Request for the list of bindings of a customer
To get a list of bindings by the identifier of a customer, the getBindings request is used.

Request parameters:
	Name
	Type
	Mandatory
	Description

	clientId
	AN..255
	yes
	Identifier of the customer in the store system passed on the order registration. This parameter is present only if a store has the permission to create bindings.

Response parameters:
	Name
	Type
	Mandatory
	Description

	errorCode
	N1
	yes
	Completion code

	errorMessage
	ANS..*
	(on an error)
	Error message

	Binding element (it consists of bindingId, maskedPan and expiryDate):
	
	
	

	bindingId
	AN..255
	no
	Identifier of a binding created on an order payment or used to pay for an order. This parameter is present only if a store has the permission to create bindings.

	maskedPan
	N..19
	no
	Masked number of the card that has been used for the payment. This parameter is to be specified only after the order has been paid.

	expiryDate
	N6
	no
	Card expiration . This parameter is to be specified only after the order has been paid.

 Error codes (the errorCode fields):
	Value
	Description

	0
	The request has been processed without system errors.

	1
	[clientId] is not specified

	2
	The information is not found

	5
	Access denied

	5
	The user must change the password

	7
	System error

Request example:
	<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:mer="http://engine.paymentgate.ru/webservices/merchant">
 <soapenv:Header/>
 <soapenv:Body>
 <mer:getBindings>
 <request clientId="client"/>
 </mer:getBindings>
 </soapenv:Body>
 </soapenv:Envelope>

Response example:
	<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns1:getBindingsResponse xmlns:ns1="http://engine.paymentgate.ru/webservices/merchant">
 <return errorCode="0" errorMessage="Success">
 <bindings>
 <binding bindingId="fd3afc57-c6d0-4e08-aaef-1b7cfeb093dc" maskedPan="400000**0002" expiryDate="201512"/>
 </bindings>
 </return>
 </ns1:getBindingsResponse>
 </soap:Body>
 </soap:Envelope>

[bookmark: scroll-bookmark-204][bookmark: _Toc256000096][bookmark: scroll-bookmark-131]Request for the list of bindings of a bank card
Provided that a store has the corresponding permissions, it can get the list of all bindings that relate to a certain bank card. This can be done by a card number or by a known binding identifier.
The getBindingsByCardOrId method is used to get the list of bindings for a bank card.
All bindings that are available to the merchant according to the merchant settings are returned in the response.

Request examples:
	Name
	Type
	Mandatory
	Description

	pan
	N..19
	no
	Card number. The parameter is mandatory, unless bindingId is specified.
A search by the full number of a card is available to stores only provided that they have the corresponding permission.

	bindingId
	AN..255
	no
	Binding identifier. The parameter is mandatory, unless pan is specified.
If the request contains pan, the bindingId value is ignored.

	showExpired
	boolean
	no
	This parameter defines the necessity to display bindings with expired card validity periods. The available values are: true, false. By default the parameter has the false value.

	language
	A2
	no
	Language in the ISO 639-1 encoding. If this parameter is not specified, the default language specified in the merchant settings is used. An error message will be returned in this language.

Response parameters:
	Name
	Type
	Mandatory
	Description

	errorCode
	N1
	yes
	Expiration code.

	errorMessage
	ANS..*
	yes
	Description of the completion code.

	Bindings element (can consist of several binding elements)
	
	
	

	Binding element (consists of bindingId, maskedPan, expiryDate and clientId):
	
	
	

	bindingId
	AN..255
	no
	Binding identifier.

	maskedPan
	N..19
	no
	Masked number of the card that has been used for the payment.

	expiryDate
	N6
	no
	The expiration date of the card validity period, in the format YYYYMM.

	clientId
	AN..255
	no
	Number (identifier) of a customer in the merchant system.

Error codes (the errorCode field):
	Value
	Description

	0
	The request has been processed without system errors.

	1
	Neither a card number, nor a binding identifier is specified.

	2
	The information is not found.

	5
	Access denied.

	5
	The user must change the password.

	7
	System error.

Request example:
	<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:mer="http://engine.paymentgate.ru/webservices/merchant">
 <soapenv:Header/>
 <soapenv:Body>
 <mer:getBindingsByCardOrId>
 <request pan="4111111111111111" bindingId=" " showExpired="true" language="ru"/>
 </mer:getBindingsByCardOrId>
 </soapenv:Body>
</soapenv:Envelope>

Response parameters:
	<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns1:getBindingsByCardOrIdResponse xmlns:ns1="http://engine.paymentgate.ru/webservices/merchant">
 <return errorCode="0" errorMessage="Success">
 <bindings>
 <binding bindingId="9f43e86d-9744-42a5-8646-c4bb7cf8799a" maskedPan="411111**1111" expiryDate="201912" clientId="12345"/>
 <binding bindingId="51c0750b-1a23-424b-8989-5e8f669124b4" maskedPan="411111**1111" expiryDate="201512" clientId="123456"/>
 <binding bindingId="6a8c0738-cc88-4200-acf6-afc264d66cb0" maskedPan="411111**1111" expiryDate="201912" clientId="666"/>
 <binding bindingId="97a70989-c1fb-49f7-8a42-27c19dc160dw" maskedPan="411111**1111" expiryDate="201512" clientId="666"/>
 </bindings>
 </return>
 </ns1:getBindingsByCardOrIdResponse>
 </soap:Body>
</soap:Envelope>

[bookmark: scroll-bookmark-196][bookmark: _Toc256000097][bookmark: scroll-bookmark-132]Request for adding a card to the list of SSL-cards
To add the number of a card that was used on an attempt to pay an order to the list of SSL-cards, the updateSSLCardList request is used.
The method is available only upon agreement with the bank. The user must be assigned the permissions to work with fraud lists.
Request examples:
	Name
	Type
	Mandatory
	Description

	orderId
	ANS36
	yes
	Identifier of the order in the payment system. It is unique within the system.

Response parameters:
	Name
	Type
	Mandatory
	Description

	errorCode
	N3
	no
	Error code.

	errorMessage
	AN..512
	no
	Description of the error in the default language of the user.

Error codes (the errorCode field):
	Value
	Description

	0
	The request has been processed without system errors.

	1
	Access denied

	2
	The user must change the password

	3
	Order number is not specified

	4
	Payment is absent from the system or an incorrect mdorder is specified

	6
	The card number is already present in the list

	7
	System error

Request example:
	<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:mer="http://engine.paymentgate.ru/webservices/merchant">
 <soapenv:Header/>
 <soapenv:Body>
 <mer:updateSSLCardList>
 <mdorder>e40927ef-6fa2-43f3-bf97-f1f2bc61d4fd</mdorder>
 </mer:updateSSLCardList>
 </soapenv:Body>
</soapenv:Envelope>

Response example:
	<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns1:updateSSLCardListResponse xmlns:ns1="http://engine.paymentgate.ru/webservices/merchant">
 <return errorCode="0" errorMessage="Request processing took place without system errors"/>
 </ns1:updateSSLCardListResponse>
 </soap:Body>
</soap:Envelope>

[bookmark: _Toc256000098][bookmark: scroll-bookmark-133]Request for a payment through Apple Pay
[bookmark: scroll-bookmark-223]The applePay request is used to process a payment through Apple Pay.
	Use the standard requests to the payment gateway for the operations of cancellation, refund and payment completion.

An example of the request is given below.
	<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:mer="http://engine.paymentgate.ru/webservices/merchant">
 <soapenv:Header/>
 <soapenv:Body>
 <mer:applePay>
 <arg0>
 <merchant>OurBestMerchantLogin</merchant>
 <orderNumber>UAF-203974-DE</orderNumber>
 <description>Test description</description>
 <paymentToken>ew0KICB7DQoJICAidmVyc2lvbiI6ICJSU0FfdjEiLA0KCSAgInNpZ25hdHVyZSI6ICJabUZyWlNCemFXZHVZWFIxY21VPSIsDQoJICAiaGVhZGVyIjogew0KCQkiZXBoZW1lcmFsUHVibGljS2V5IjogIk1Ga3dFd1lIS29aSXpqMENBUVlJS29aSXpqMERBUWNEUWdBRW14Q2hDcGpLemY5YVh6MjZXVDZaVE4yekUzaUdYUWpjWlJZWUFkUUlURFgyUmtBTmJ0N2s5cmFoRjFoempqbWVWVHhjZ0NvZkg4MXprMkdOVFozZHRnPT0iICAgICAgIA0KCQkid3JhcHBlZEtleSI6ICJYejI2V1Q2WlROMnpFM2lHWFFqYz0iDQoJCSJwdWJsaWNLZXlIYXNoIjogIk9yV2dqUkdrcUVXamRrUmRVclhmaUxHRDBoZS96cEV1NTEyRkpXckdZRm89IiwNCgkJInRyYW5zYWN0aW9uSWQiOiAiYXBwbGUtMTIzNDU2Nzg5MEFCQ0RFRiINCgkgIH0sDQoJICAiZGF0YSI6ICIxZFhFMTNrdnpUVlA2bldFTjhEMnBoclBsZlFjR3I4VzN5ajJTSFlZai9QeWNIV1RqbnBWN3ovRXI3OGJyaT09Ig0KICB9DQp9</paymentToken>
 <language>RU</language>
 <additionalParameters>
 <entry>
 <key>firstParamName</key>
 <value>firstParamValue</value>
 </entry>
 </additionalParameters>
 <preAuth>true</preAuth>
			<ip>127.0.0.1</ip>
		 </arg0>
 </mer:applePay>
 </soapenv:Body>
</soapenv:Envelope>

The description of the request is given in the table below.
	Parameter
	Mandatory
	Description

	merchant
	No
	Merchant login in the payment gateway system.

	orderNumber
	No
	Unique identifier of the order on the merchant side.

	description
	No
	Order description.

	paymentToken
	Yes
	The paymentToken parameter must contain a Base64 encoded value of the paymentData property that was received in PKPaymentToken Object from the Apple Pay system (see the documentation for Apple Pay). Thus, to send a payment request to the payment gateway, the merchant must:
1. Receive from the Apple Pay system the PKPaymentToken Object object containing the paymentData property;
2. Extract the value of the paymentData property and encode it in Base64;
3. Include the encoded value of the paymentData property as the value of the paymentToken parameter in the payment request that the merchant sends to the payment gateway.
Thus, the merchant receives from Apple PKPaymentToken Object that looks as follows:
	{"paymentData":{"data":"vj5Uvux7Im8DD8YhSOsJvw5lWmfl2HMUnTNWJhVfTehvFffRhDo54mfpjxMt9vJdp6DwD7fgcNHDxBvnj56qYG4DpOxg1fTSdXgPFrezprZHCrRxPhN\/aQQEThe2pQ0c7hgzzZlA6TpkIR\/Xtk6CTcEbD1W6znFVdvMgX8G96Gg4OAGl8GaTXdSU3wlMQL5E63CLQzPi1xHVErWl1OOn6hYQuREUDGc7mAjmqMyLwX+p6mOwJZ6ZFO\/b9HkgFi428rqtOH08AfqkfaIWwIIAz2w3xEoZrDXbgFpNBnN7F2oretCU1\/dFvQJjDYbMorKQ8+GJbWtlsVb+Ksy0U91eoUetDcyMpB9zc139STYVoC8yp6Yk6Mn3icCLY0ZBujq7\/404kMGpnHgkNVqFc\/4SN0U2XQ5rrb14DM8M69w=","signature":"MIAGCSqGSIb3DQEHAqCAMIACAQExDzANBglghkgBZQMEAgEFADCABgkqhkiG9w0BBwEAAKCAMIID4jCCA4igAwIBAgIIJEPyqAad9XcwCgYIKoZIzj0EAwIwejEuMCwGA1UEAwwlQXBwbGUgQXBwbGljYXRpb24gSW50ZWdyYXRpb24gQ0EgLSBHMzEmMCQGA1UECwwdQXBwbGUgQ2VydGlmaWNhdGlvbiBBdXRob3JpdHkxEzARBgNVBAoMCkFwcGxlIEluYy4xCzAJBgNVBAYTAlVTMB4XDTE0MDkyNTIyMDYxMVoXDTE5MDkyNDIyMDYxMVowXzElMCMGA1UEAwwcZWNjLXNtcC1icm9rZXItc2lnbl9VQzQtUFJPRDEUMBIGA1UECwwLaU9TIFN5c3RlbXMxEzARBgNVBAoMCkFwcGxlIEluYy4xCzAJBgNVBAYTAlVTMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEwhV37evWx7Ihj2jdcJChIY3HsL1vLCg9hGCV2Ur0pUEbg0IO2BHzQH6DMx8cVMP36zIg1rrV1O\/0komJPnwPE6OCAhEwggINMEUGCCsGAQUFBwEBBDkwNzA1BggrBgEFBQcwAYYpaHR0cDovL29jc3AuYXBwbGUuY29tL29jc3AwNC1hcHBsZWFpY2EzMDEwHQYDVR0OBBYEFJRX22\/VdIGGiYl2L35XhQfnm1gkMAwGA1UdEwEB\/wQCMAAwHwYDVR0jBBgwFoAUI\/JJxE+T5O8n5sT2KGw\/orv9LkswggEdBgNVHSAEggEUMIIBEDCCAQwGCSqGSIb3Y2QFATCB\/jCBwwYIKwYBBQUHAgIwgbYMgbNSZWxpYW5jZSBvbiB0aGlzIGNlcnRpZmljYXRlIGJ5IGFueSBwYXJ0eSBhc3N1bWVzIGFjY2VwdGFuY2Ugb2YgdGhlIHRoZW4gYXBwbGljYWJsZSBzdGFuZGFyZCB0ZXJtcyBhbmQgY29uZGl0aW9ucyBvZiB1c2UsIGNlcnRpZmljYXRlIHBvbGljeSBhbmQgY2VydGlmaWNhdGlvbiBwcmFjdGljZSBzdGF0ZW1lbnRzLjA2BggrBgEFBQcCARYqaHR0cDovL3d3dy5hcHBsZS5jb20vY2VydGlmaWNhdGVhdXRob3JpdHkvMDQGA1UdHwQtMCswKaAnoCWGI2h0dHA6Ly9jcmwuYXBwbGUuY29tL2FwcGxlYWljYTMuY3JsMA4GA1UdDwEB\/wQEAwIHgDAPBgkqhkiG92NkBh0EAgUAMAoGCCqGSM49BAMCA0gAMEUCIHKKnw+Soyq5mXQr1V62c0BXKpaHodYu9TWXEPUWPpbpAiEAkTecfW6+W5l0r0ADfzTCPq2YtbS39w01XIayqBNy8bEwggLuMIICdaADAgECAghJbS+\/OpjalzAKBggqhkjOPQQDAjBnMRswGQYDVQQDDBJBcHBsZSBSb290IENBIC0gRzMxJjAkBgNVBAsMHUFwcGxlIENlcnRpZmljYXRpb24gQXV0aG9yaXR5MRMwEQYDVQQKDApBcHBsZSBJbmMuMQswCQYDVQQGEwJVUzAeFw0xNDA1MDYyMzQ2MzBaFw0yOTA1MDYyMzQ2MzBaMHoxLjAsBgNVBAMMJUFwcGxlIEFwcGxpY2F0aW9uIEludGVncmF0aW9uIENBIC0gRzMxJjAkBgNVBAsMHUFwcGxlIENlcnRpZmljYXRpb24gQXV0aG9yaXR5MRMwEQYDVQQKDApBcHBsZSBJbmMuMQswCQYDVQQGEwJVUzBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABPAXEYQZ12SF1RpeJYEHduiAou\/ee65N4I38S5PhM1bVZls1riLQl3YNIk57ugj9dhfOiMt2u2ZwvsjoKYT\/VEWjgfcwgfQwRgYIKwYBBQUHAQEEOjA4MDYGCCsGAQUFBzABhipodHRwOi8vb2NzcC5hcHBsZS5jb20vb2NzcDA0LWFwcGxlcm9vdGNhZzMwHQYDVR0OBBYEFCPyScRPk+TvJ+bE9ihsP6K7\/S5LMA8GA1UdEwEB\/wQFMAMBAf8wHwYDVR0jBBgwFoAUu7DeoVgziJqkipnevr3rr9rLJKswNwYDVR0fBDAwLjAsoCqgKIYmaHR0cDovL2NybC5hcHBsZS5jb20vYXBwbGVyb290Y2FnMy5jcmwwDgYDVR0PAQH\/BAQDAgEGMBAGCiqGSIb3Y2QGAg4EAgUAMAoGCCqGSM49BAMCA2cAMGQCMDrPcoNRFpmxhvs1w1bKYr\/0F+3ZD3VNoo6+8ZyBXkK3ifiY95tZn5jVQQ2PnenC\/gIwMi3VRCGwowV3bF3zODuQZ\/0XfCwhbZZPxnJpghJvVPh6fRuZy5sJiSFhBpkPCZIdAAAxggGMMIIBiAIBATCBhjB6MS4wLAYDVQQDDCVBcHBsZSBBcHBsaWNhdGlvbiBJbnRlZ3JhdGlvbiBDQSAtIEczMSYwJAYDVQQLDB1BcHBsZSBDZXJ0aWZpY2F0aW9uIEF1dGhvcml0eTETMBEGA1UECgwKQXBwbGUgSW5jLjELMAkGA1UEBhMCVVMCCCRD8qgGnfV3MA0GCWCGSAFlAwQCAQUAoIGVMBgGCSqGSIb3DQEJAzELBgkqhkiG9w0BBwEwHAYJKoZIhvcNAQkFMQ8XDTE3MDMxNzEwMzgzOVowKgYJKoZIhvcNAQk0MR0wGzANBglghkgBZQMEAgEFAKEKBggqhkjOPQQDAjAvBgkqhkiG9w0BCQQxIgQgvL+q07\/reM0N\/5b0hwWT7TJReVTdS9QX5SPhiqeie+cwCgYIKoZIzj0EAwIERzBFAiEAttC68Xyzs6I0+tAKmg6x+0UrqmkQN\/V5c8RMMIEJHooCIHIgUHbAt2p5WrFHQKrAVL4c7nohRplZWVbVu6wbBeCgAAAAAAAA","header":{"publicKeyHash":"fpvAnSDwQFX4NX4pghdjpNwUFhoTH\/DDGhew94uJaRA=","ephemeralPublicKey":"MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAErKZUfqvhlieGAOaCKeTB\/oDEo29fS1jWSKemNDh3fIqmbfs86nL4BGtRsWRxWcMnHN6GFOQm1MEj4m7ZHxe78g==","transactionId":"38e4c267ef1de62a343d0eccada3f7e19f6b22ffc7ede899c039865432ba6aa2"},"version":"EC_v1"},"transactionIdentifier":"38E4C267EF1DE62A343D0ECCADA3F7E19F6B22FFC7EDE899C039865432BA6AA2","paymentMethod":{"network":"Visa","type":"debit","displayName":"Visa 5223"}}

The value of the paymentData property (from the example above) that is to be encoded in Base64 and to be passed in the payment request to the payment gateway looks as follows:
	{"data":"vj5Uvux7Im8DD8YhSOsJvw5lWmfl2HMUnTNWJhVfTehvFffRhDo54mfpjxMt9vJdp6DwD7fgcNHDxBvnj56qYG4DpOxg1fTSdXgPFrezprZHCrRxPhN\/aQQEThe2pQ0c7hgzzZlA6TpkIR\/Xtk6CTcEbD1W6znFVdvMgX8G96Gg4OAGl8GaTXdSU3wlMQL5E63CLQzPi1xHVErWl1OOn6hYQuREUDGc7mAjmqMyLwX+p6mOwJZ6ZFO\/b9HkgFi428rqtOH08AfqkfaIWwIIAz2w3xEoZrDXbgFpNBnN7F2oretCU1\/dFvQJjDYbMorKQ8+GJbWtlsVb+Ksy0U91eoUetDcyMpB9zc139STYVoC8yp6Yk6Mn3icCLY0ZBujq7\/404kMGpnHgkNVqFc\/4SN0U2XQ5rrb14DM8M69w=","signature":"MIAGCSqGSIb3DQEHAqCAMIACAQExDzANBglghkgBZQMEAgEFADCABgkqhkiG9w0BBwEAAKCAMIID4jCCA4igAwIBAgIIJEPyqAad9XcwCgYIKoZIzj0EAwIwejEuMCwGA1UEAwwlQXBwbGUgQXBwbGljYXRpb24gSW50ZWdyYXRpb24gQ0EgLSBHMzEmMCQGA1UECwwdQXBwbGUgQ2VydGlmaWNhdGlvbiBBdXRob3JpdHkxEzARBgNVBAoMCkFwcGxlIEluYy4xCzAJBgNVBAYTAlVTMB4XDTE0MDkyNTIyMDYxMVoXDTE5MDkyNDIyMDYxMVowXzElMCMGA1UEAwwcZWNjLXNtcC1icm9rZXItc2lnbl9VQzQtUFJPRDEUMBIGA1UECwwLaU9TIFN5c3RlbXMxEzARBgNVBAoMCkFwcGxlIEluYy4xCzAJBgNVBAYTAlVTMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEwhV37evWx7Ihj2jdcJChIY3HsL1vLCg9hGCV2Ur0pUEbg0IO2BHzQH6DMx8cVMP36zIg1rrV1O\/0komJPnwPE6OCAhEwggINMEUGCCsGAQUFBwEBBDkwNzA1BggrBgEFBQcwAYYpaHR0cDovL29jc3AuYXBwbGUuY29tL29jc3AwNC1hcHBsZWFpY2EzMDEwHQYDVR0OBBYEFJRX22\/VdIGGiYl2L35XhQfnm1gkMAwGA1UdEwEB\/wQCMAAwHwYDVR0jBBgwFoAUI\/JJxE+T5O8n5sT2KGw\/orv9LkswggEdBgNVHSAEggEUMIIBEDCCAQwGCSqGSIb3Y2QFATCB\/jCBwwYIKwYBBQUHAgIwgbYMgbNSZWxpYW5jZSBvbiB0aGlzIGNlcnRpZmljYXRlIGJ5IGFueSBwYXJ0eSBhc3N1bWVzIGFjY2VwdGFuY2Ugb2YgdGhlIHRoZW4gYXBwbGljYWJsZSBzdGFuZGFyZCB0ZXJtcyBhbmQgY29uZGl0aW9ucyBvZiB1c2UsIGNlcnRpZmljYXRlIHBvbGljeSBhbmQgY2VydGlmaWNhdGlvbiBwcmFjdGljZSBzdGF0ZW1lbnRzLjA2BggrBgEFBQcCARYqaHR0cDovL3d3dy5hcHBsZS5jb20vY2VydGlmaWNhdGVhdXRob3JpdHkvMDQGA1UdHwQtMCswKaAnoCWGI2h0dHA6Ly9jcmwuYXBwbGUuY29tL2FwcGxlYWljYTMuY3JsMA4GA1UdDwEB\/wQEAwIHgDAPBgkqhkiG92NkBh0EAgUAMAoGCCqGSM49BAMCA0gAMEUCIHKKnw+Soyq5mXQr1V62c0BXKpaHodYu9TWXEPUWPpbpAiEAkTecfW6+W5l0r0ADfzTCPq2YtbS39w01XIayqBNy8bEwggLuMIICdaADAgECAghJbS+\/OpjalzAKBggqhkjOPQQDAjBnMRswGQYDVQQDDBJBcHBsZSBSb290IENBIC0gRzMxJjAkBgNVBAsMHUFwcGxlIENlcnRpZmljYXRpb24gQXV0aG9yaXR5MRMwEQYDVQQKDApBcHBsZSBJbmMuMQswCQYDVQQGEwJVUzAeFw0xNDA1MDYyMzQ2MzBaFw0yOTA1MDYyMzQ2MzBaMHoxLjAsBgNVBAMMJUFwcGxlIEFwcGxpY2F0aW9uIEludGVncmF0aW9uIENBIC0gRzMxJjAkBgNVBAsMHUFwcGxlIENlcnRpZmljYXRpb24gQXV0aG9yaXR5MRMwEQYDVQQKDApBcHBsZSBJbmMuMQswCQYDVQQGEwJVUzBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABPAXEYQZ12SF1RpeJYEHduiAou\/ee65N4I38S5PhM1bVZls1riLQl3YNIk57ugj9dhfOiMt2u2ZwvsjoKYT\/VEWjgfcwgfQwRgYIKwYBBQUHAQEEOjA4MDYGCCsGAQUFBzABhipodHRwOi8vb2NzcC5hcHBsZS5jb20vb2NzcDA0LWFwcGxlcm9vdGNhZzMwHQYDVR0OBBYEFCPyScRPk+TvJ+bE9ihsP6K7\/S5LMA8GA1UdEwEB\/wQFMAMBAf8wHwYDVR0jBBgwFoAUu7DeoVgziJqkipnevr3rr9rLJKswNwYDVR0fBDAwLjAsoCqgKIYmaHR0cDovL2NybC5hcHBsZS5jb20vYXBwbGVyb290Y2FnMy5jcmwwDgYDVR0PAQH\/BAQDAgEGMBAGCiqGSIb3Y2QGAg4EAgUAMAoGCCqGSM49BAMCA2cAMGQCMDrPcoNRFpmxhvs1w1bKYr\/0F+3ZD3VNoo6+8ZyBXkK3ifiY95tZn5jVQQ2PnenC\/gIwMi3VRCGwowV3bF3zODuQZ\/0XfCwhbZZPxnJpghJvVPh6fRuZy5sJiSFhBpkPCZIdAAAxggGMMIIBiAIBATCBhjB6MS4wLAYDVQQDDCVBcHBsZSBBcHBsaWNhdGlvbiBJbnRlZ3JhdGlvbiBDQSAtIEczMSYwJAYDVQQLDB1BcHBsZSBDZXJ0aWZpY2F0aW9uIEF1dGhvcml0eTETMBEGA1UECgwKQXBwbGUgSW5jLjELMAkGA1UEBhMCVVMCCCRD8qgGnfV3MA0GCWCGSAFlAwQCAQUAoIGVMBgGCSqGSIb3DQEJAzELBgkqhkiG9w0BBwEwHAYJKoZIhvcNAQkFMQ8XDTE3MDMxNzEwMzgzOVowKgYJKoZIhvcNAQk0MR0wGzANBglghkgBZQMEAgEFAKEKBggqhkjOPQQDAjAvBgkqhkiG9w0BCQQxIgQgvL+q07\/reM0N\/5b0hwWT7TJReVTdS9QX5SPhiqeie+cwCgYIKoZIzj0EAwIERzBFAiEAttC68Xyzs6I0+tAKmg6x+0UrqmkQN\/V5c8RMMIEJHooCIHIgUHbAt2p5WrFHQKrAVL4c7nohRplZWVbVu6wbBeCgAAAAAAAA","header":{"publicKeyHash":"fpvAnSDwQFX4NX4pghdjpNwUFhoTH\/DDGhew94uJaRA=","ephemeralPublicKey":"MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAErKZUfqvhlieGAOaCKeTB\/oDEo29fS1jWSKemNDh3fIqmbfs86nL4BGtRsWRxWcMnHN6GFOQm1MEj4m7ZHxe78g==","transactionId":"38e4c267ef1de62a343d0eccada3f7e19f6b22ffc7ede899c039865432ba6aa2"},"version":"EC_v1"}

	language
	No
	Language in the ISO 639-1 encoding. If the language is not specified, the default language specified in the store settings is used.

	additionalParameters
	No
	Additional parameters of the order that are stored in the merchant personal area for the subsequent viewing. For each additional parameter, use the nested parameter entry that, in its turn, contains the following nested parameters:
· key - the name of a parameter;
· value - the parameter value.
Below an example of a part of the request containing several nested parameters is presented.
	<entry>
 <key>parameter_1</key>
 <value>value_1</value>
</entry>
<entry>
 <key>parameter_2</key>
 <value>value_2</value>
</entry>

	preAuth
	Yes
	Parameter that defines the necessity of a pre-authorization (putting the amount on hold on the customer's account until its debiting). The following values are available:
· true - the parameter is enabled, a payment is processed with a pre-authorization (the amount on the customer's account is put on hold until the debiting);
· false - the parameter is disabled (the amount is debited immediately).
If the parameter is not specified in the request, the amount is debited immediately.

	clientId
	No
	Customer identifier for which a binding for recurring payments is to be created. Specify it only if the payment is dummy and is intended for subsequent recurring payments.

	ip
	No
	IP-address of the payer.

Below an example is presented of a response after a successful payment.
	<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns1:applePayResponse xmlns:ns1="http://engine.paymentgate.ru/webservices/merchant">
 <return>
 <success>true</success>
 <data>
 <orderId>12312312123</orderId>
 </data>
 <orderStatus errorCode="0"/>
 </return>
 </ns1:applePayResponse>
 </soap:Body>
</soap:Envelope>

Below an example is presented of a response after an unsuccessful payment.
	<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns1:applePayResponse xmlns:ns1="http://engine.paymentgate.ru/webservices/merchant">
 <return>
 <success>false</success>
 <error>
 <code>10</code>
 <description>The private key is missing</description>
 </error>
 <orderStatus errorCode="0"/>
 </return>
 </ns1:applePayResponse>
 </soap:Body>
</soap:Envelope>

The description of the response parameters is presented in the table below.
	Parameter
	Nested parameter
	Mandatory parameter
	Description

	success
	Not relevant
	Yes
	Designates a successful payment. The following values are available:
· true - the payment is processed successfully;
· false - the payment failed.

	data
(this parameter is returned only if the payment is processed successfully)
	orderId
	Yes
	Order number in the payment system unique for the merchant.

	error
(this parameter is returned only if the payment failed)
	code
	Yes
	Error code.

	
	description
	Yes
	A detailed technical explanation of the error - the contents of this parameter is not to be displayed to the customer.

Error codes that may be returned as a result of a failed payment are presented in the table below. The information on the parameters used is also presented in the Apple documentation.
	Error code
	Message

	4
	Incorrect value of the [paymentToken.signature] parameter, the check failed

	10
	Incorrect value of the [merchant] parameter

	
	Incorrect value of the [orderNumber] parameter

	
	Incorrect value of the [paymentToken] parameter

	
	Incorrect value of the [paymentToken.version] parameter

	
	Incorrect value of the [paymentToken.header] parameter

	
	Incorrect value of the [paymentToken.signature] parameter

	
	Incorrect value of the [paymentToken.header.transactionId] parameter

	
	Incorrect value of the [paymentToken.header.wrappedKey] parameter

	
	Incorrect value of the [paymentToken.header.publicKeyHash] parameter

	
	Authorization is invalid

[bookmark: _Toc256000099][bookmark: scroll-bookmark-134]Request for executing recurring payments through Apple Pay
A request for processing a recurring payment through Apple Pay

[bookmark: scroll-bookmark-224]The recurrentPayment request is used to register the order (see Connection URLs).
	<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:mer="http://engine.paymentgate.ru/webservices/merchant">
 <soapenv:Header/>
 <soapenv:Body>
 <mer:recurrentPayment>
 <arg0>
 <orderNumber>123123</orderNumber>
 <bindingId>binding_id</bindingId>
 <amount>123</amount>
 <description>description</description>
 <additionalParameters>
 <entry>
 <key>firstParamName</key>
 <value>firstParamName</value>
 </entry>
 </additionalParameters>
 </arg0>
 </mer:recurrentPayment>
 </soapenv:Body>
</soapenv:Envelope>

The description of the parameters is presented in the table below.
	Parameter
	Mandatory
	Description

	orderNumber
	Yes
	Order number.

	bindingId
	Yes
	Binding identifier.

	amount
	Yes
	Payment amount.

	description
	No
	Order description.

	additionalParameters
	No
	Additional parameters of the order that are stored in the merchant personal area for the subsequent viewing. For each additional parameter, use the nested parameter entry that, in its turn, contains the following nested parameters:
· key - the name of a parameter;
· value - the parameter value.
Below an example of a part of the request containing several nested parameters is presented.
	<entry>
 <key>parameter_1</key>
 <value>value_1</value>
</entry>
<entry>
 <key>parameter_2</key>
 <value>value_2</value>
</entry>

Below an example of a success response to the request is presented.
	<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns1:recurrentPaymentResponse xmlns:ns1="http://engine.paymentgate.ru/webservices/merchant">
 <return>
 <success>true</success>
 <data>
 <orderId>134561314642</orderId>
 </data>
 <orderStatus errorCode="0"/>
 </return>
 </ns1:recurrentPaymentResponse>
 </soap:Body>
</soap:Envelope>

Below an example of a failure response to the request is presented.
	<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns1:recurrentPaymentResponse xmlns:ns1="http://engine.paymentgate.ru/webservices/merchant">
 <return>
 <success>false</success>
 <error>
 <code>10</code>
 <description>An order with this number is already registered.</description>
 </error>
 <orderStatus errorCode="0"/>
 </return>
 </ns1:recurrentPaymentResponse>
 </soap:Body>
</soap:Envelope>

The description of the response parameters is presented in the table below.
	Parameter
	Nested parameter
	Mandatory parameter
	Description

	success
	Not relevant
	Yes
	Designates a successful payment. The following values are available:
· true - the payment is processed successfully;
· false - the payment failed.

	data
(this parameter is returned only if the payment is processed successfully)
	orderId
	Yes
	Order number in the payment system unique for the merchant.

	error
(this parameter is returned only if the payment failed)
	code
	Yes
	Error code.

	
	description
	Yes
	A detailed technical explanation of the error - the contents of this parameter is not to be displayed to the customer.

[bookmark: _Toc256000100][bookmark: scroll-bookmark-135]Request for a payment through Android Pay
[bookmark: scroll-bookmark-231]The androidPay request is used for payments through Android Pay.
	Use the standard requests to the payment gateway for the operations of cancellation, refund and payment completion.

Below an example of a payment request is given.
	<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:mer="http://engine.paymentgate.ru/webservices/merchant">
 <soapenv:Header/>
 <soapenv:Body>
 <mer:androidPay>
 <arg0>
 <merchant>OurBestMerchantLogin</merchant>
 <orderNumber>UAF-203974-DE</orderNumber>
 <language>RU</language>
 <preAuth>true</preAuth>
 <paymentToken>\x7B\x0A\x20\x20\xE2\x80\x9C\x65\x6E\x63\x72\x79\x70\x74\x65\x64\x4D\x65\x73\x73\x61\x67\x65\xE2\x80\x9D\x3A\x20\xE2\x80\x9C\x5A\x57\x35\x6A\x63\x6E\x6C\x77\x64\x47\x56\x6B\x54\x57\x56\x7A\x63\x32\x46\x6E\x5A\x51\x3D\x3D\xE2\x80\x9D\x2C\x0A\x20\x20\xE2\x80\x9C\x65\x70\x68\x65\x6D\x65\x72\x61\x6C\x50\x75\x62\x6C\x69\x63\x4B\x65\x79\xE2\x80\x9D\x3A\x20\xE2\x80\x9C\x5A\x58\x42\x6F\x5A\x57\x31\x6C\x63\x6D\x46\x73\x55\x48\x56\x69\x62\x47\x6C\x6A\x53\x32\x56\x35\xE2\x80\x9D\x2C\x0A\x20\x20\x22\x74\x61\x67\x22\x3A\x20\xE2\x80\x9D\x63\x32\x6C\x6E\x62\x6D\x46\x30\x64\x58\x4A\x6C\xE2\x80\x9D\x0A\x7D</paymentToken>
 <ip>127.0.0.1</ip>
 <amount>230000</amount>
 <currencyCode>810</currencyCode>
 </arg0>
 </mer:androidPay>
 </soapenv:Body>
</soapenv:Envelope>

	Parameter
	Mandatory
	Description

	merchant
	No
	Merchant login in the payment gateway system.

	orderNumber
	Yes
	Unique identifier of the order on the merchant side.

	paymentToken
	Yes
	JSON-object that contains a token received from Android Pay. This parameter must be in the UTF-8 encoding.

	ip
	Yes
	IP-address of the payer.

	amount
	Yes
	Payment amount in the minimum denomination of the currency (for example, in kopeks).

	description
	No
	Order description.

	language
	No
	Language in the ISO 639-1 encoding. If the language is not specified, the default language specified in the store settings is used.

	additionalParameters
	No
	Additional parameters of the order that are stored in the merchant personal area for the subsequent viewing. For each additional parameter, use the nested parameter entry that, in its turn, contains the following nested parameters:
· key - the name of a parameter;
· value - the parameter value.
Below an example of a part of the request containing several nested parameters is presented.
	<entry>
 <key>parameter_1</key>
 <value>value_1</value>
</entry>
<entry>
 <key>parameter_2</key>
 <value>value_2</value>
</entry>

	preAuth
	No
	Parameter that defines the necessity of a pre-authorization (putting the amount on hold on the customer's account until its debiting). The following values are available:
· true - the parameter is enabled, a payment is processed with a pre-authorization (the amount on the customer's account is put on hold until the debiting);
· false - the parameter is disabled (the amount is debited immediately).
If the parameter is not specified in the request, the amount is debited immediately.

	clientId
	No
	Customer identifier for which a binding for recurring payments is to be created. Specify it only if the payment is dummy and is intended for subsequent recurring payments.

	currencyCode
	No
	Numeric ISO 4217 code of the payment currency. If this parameter is not specified, it is considered to be equal to the default currency code.

The description of the response parameters is presented in the table below.
	Parameter
	Nested parameter
	Mandatory parameter
	Description

	success
	Not relevant
	Yes
	Designates a successful payment. The following values are available:
· true - the payment is processed successfully;
· false - the payment failed.

	data
(this parameter is returned only if the payment is processed successfully)
	orderId
	Yes
	Order number in the payment system unique for the merchant.

	error
(this parameter is returned only if the payment failed)
	code
	Yes
	Error code.

	
	description
	Yes
	A detailed technical explanation of the error - the contents of this parameter is not to be displayed to the customer.

	
	message
	Yes
	Comprehensive error description - it is intended for displaying to the user.

Below an example is presented of a response after a successful payment.
	<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns1:androidPayResponse xmlns:ns1="http://engine.paymentgate.ru/webservices/merchant">
 <return>
 <success>true</success>
 <data>
 <orderId>12312312123</orderId>
 </data>
 <orderStatus errorCode="0"/>
 </return>
 </ns1:androidPayResponse>
 </soap:Body>
</soap:Envelope>

An example of a response after a failed payment is given below.
	<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns1:androidPayResponse xmlns:ns1="http://engine.paymentgate.ru/webservices/merchant">
 <return>
 <success>false</success>
 <error>
 <code>10</code>
 <description>Incorrect value of the [orderNumber] parameter</description>
 </error>
 <orderStatus errorCode="0"/>
 </return>
 </ns1:androidPayResponse>
 </soap:Body>
</soap:Envelope>

The possible error codes are presented in the table below.
	Error code
	Error message

	0
	The request has been processed without system errors.

	1
	The funds on the card are not sufficient

	5
	Access denied

	
	The user must change the password

	7
	System error

	10
	Incorrect value of the [paymentToken] parameter

	
	Incorrect value of the [orderNumber] parameter

	
	Incorrect value of the [merchant] parameter

	
	Incorrect value of the [ip] parameter

	
	Encryption of the data passed in unsuccessful

[bookmark: _Toc256000101][bookmark: scroll-bookmark-136]Request for a payment through Samsung Pay
[bookmark: scroll-bookmark-233] For a payment through Samsung Pay, the samsungPay request is used.
	Use the standard requests to the payment gateway for the operations of cancellation, refund and payment completion.

Below an example of a payment request is given.
	<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:mer="http://engine.paymentgate.ru/webservices/merchant">
 <soapenv:Header/>
 <soapenv:Body>
 <mer:samsungPay>
 <arg0>
 <merchant>OurBestMerchantLogin</merchant>
 <orderNumber>UAF-203974-DE</orderNumber>
 <description>Test description</description>
 <paymentToken>ew0KICB7DQoJICAidmVyc2lvbiI6ICJSU0FfdjEiLA0KCSAgInNpZ25hdHVyZSI6ICJabUZyWlNCemFXZHVZWFIxY21VPSIsDQoJICAiaGVhZGVyIjogew0KCQkiZXBoZW1lcmFsUHVibGljS2V5IjogIk1Ga3dFd1lIS29aSXpqMENBUVlJS29aSXpqMERBUWNEUWdBRW14Q2hDcGpLemY5YVh6MjZXVDZaVE4yekUzaUdYUWpjWlJZWUFkUUlURFgyUmtBTmJ0N2s5cmFoRjFoempqbWVWVHhjZ0NvZkg4MXprMkdOVFozZHRnPT0iICAgICAgIA0KCQkid3JhcHBlZEtleSI6ICJYejI2V1Q2WlROMnpFM2lHWFFqYz0iDQoJCSJwdWJsaWNLZXlIYXNoIjogIk9yV2dqUkdrcUVXamRrUmRVclhmaUxHRDBoZS96cEV1NTEyRkpXckdZRm89IiwNCgkJInRyYW5zYWN0aW9uSWQiOiAiYXBwbGUtMTIzNDU2Nzg5MEFCQ0RFRiINCgkgIH0sDQoJICAiZGF0YSI6ICIxZFhFMTNrdnpUVlA2bldFTjhEMnBoclBsZlFjR3I4VzN5ajJTSFlZai9QeWNIV1RqbnBWN3ovRXI3OGJyaT09Ig0KICB9DQp9</paymentToken>
 <language>RU</language>
 <additionalParameters>
 <entry>
 <key>firstParamName</key>
 <value>firstParamValue</value>
 </entry>
 </additionalParameters>
 <preAuth>true</preAuth>
 <ip>127.0.0.1</ip>
 </arg0>
 </mer:samsungPay>
 </soapenv:Body>
</soapenv:Envelope>

The description of the request parameters is given in the table below.
	merchant
	No
	Merchant login in the payment gateway system.

	orderNumber
	Yes
	Unique identifier of the order on the merchant side.

	paymentToken
	Yes
	The contents of the 3ds.data parameter from the response received from Samsung Pay.

	ip
	Yes
	IP-address of the payer.

	amount
	Yes
	Payment amount in the minimum denomination of the currency (for example, in kopeks).

	description
	No
	Order description.

	language
	No
	Language in the ISO 639-1 encoding. If the language is not specified, the default language specified in the store settings is used.

	additionalParameters
	No
	Additional parameters of the order that are stored in the merchant personal area for the subsequent viewing. For each additional parameter, use the nested parameter entry that, in its turn, contains the following nested parameters:
· key - the name of a parameter;
· value - the parameter value.
Below an example of a part of the request containing several nested parameters is presented.

	<entry> <key>parameter_1</key> <value>value_1</value></entry><entry> <key>parameter_2</key> <value>value_2</value></entry>

	preAuth
	No
	Parameter that defines the necessity of a pre-authorization (putting the amount on hold on the customer's account until its debiting). The following values are available:
· true - the parameter is enabled, a payment is processed with a pre-authorization (the amount on the customer's account is put on hold until the debiting);
· false - the parameter is disabled (the amount is debited immediately).
If the parameter is not specified in the request, the amount is debited immediately.

	clientId
	No
	Customer identifier for which a binding for recurring payments is to be created. Specify it only if the payment is dummy and is intended for subsequent recurring payments.

	currencyCode
	No
	Numeric ISO 4217 code of the payment currency. If this parameter is not specified, it is considered to be equal to the default currency code.

Below an example is presented of a response after a successful payment.
	<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns1:samsungPayResponse xmlns:ns1="http://engine.paymentgate.ru/webservices/merchant">
 <return>
 <success>true</success>
 <data>
 <orderId>12312312123</orderId>
 </data>
 <orderStatus errorCode="0"/>
 </return>
 </ns1:samsungPayResponse>
 </soap:Body>
</soap:Envelope>

Below an example is presented of a response after an unsuccessful payment.
	<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns1:samsungPayResponse xmlns:ns1="http://engine.paymentgate.ru/webservices/merchant">
 <return>
 <success>false</success>
 <error>
 <code>1</code>
 <description>The funds on the card are not sufficient</description>
 </error>
 <orderStatus errorCode="0"/>
 </return>
 </ns1:samsungPayResponse>
 </soap:Body>
</soap:Envelope>

The description of the response parameters is presented in the table below.
	Parameter
	Nested parameter
	Description
	Mandatory

	success
	Not relevant
	Yes
	Designates a successful payment. The following values are available:
· true - the payment is processed successfully;
· false - the payment failed.

	data
(this parameter is returned only if the payment is processed successfully)
	orderId
	Yes
	Order number in the payment system unique for the merchant.

	error
(this parameter is returned only if the payment failed)
	code
	Yes
	Error code.

	
	description
	Yes
	A detailed technical explanation of the error - the contents of this parameter is not to be displayed to the customer.

	
	message
	Yes
	Comprehensive error description - it is intended for displaying to the user.

The description of the possible error codes is given in the table below.
	Code
	Description

	0
	The request has been processed without system errors.

	1
	The funds on the card are not sufficient

	5
	Access denied

	
	The user must change the password

	7
	System error

	10
	Incorrect value of the [paymentToken] parameter

	
	Incorrect value of the [orderNumber] parameter

	
	Incorrect value of the [merchant] parameter

	
	Incorrect value of the [ip] parameter

	
	Incorrect value of the [paymentToken.header.alg] parameter

	
	Incorrect value of the [paymentToken.header.enc] parameter

	
	Incorrect value of the [paymentToken.header.typ] parameter

	
	Incorrect value of the [paymentToken.header.channelSecurityContext] parameter

	
	Incorrect value of the [paymentToken.header.kid] parameter

	
	Encryption of the data passed in unsuccessful

[bookmark: _Toc256000102][bookmark: scroll-bookmark-137]REST interface
[bookmark: scroll-bookmark-181][bookmark: _Toc256000103][bookmark: scroll-bookmark-138]Order registration request
The register.do request is used to register an order (see the Connection URLs section).

Request examples:
	Name
	Type
	Mandatory
	Description

	userName
	AN..30
	yes
	Store login received on the connection

	password
	AN..30
	yes
	Store password received on the connection

	orderNumber
	AN..32
	yes
	Identifier of an order in the store system, it is unique for each store within the system

	amount
	N..20
	yes
	Payment amount in the minor denomination (cents or kopeks)

	currency
	N3
	no
	ISO 4217 code of the payment currency. If the code is not specified, the default value is 810 (Russian roubles).

	returnUrl
	AN..512
	yes
	The address to which the user is to be redirected in case of a successful payment. The address must be specified in full including the protocol used (for example, https://test.ru instead of test.ru). Otherwise, the user will be redirected to the address of the following type: http://<payment_gateway_address>/<merchant_address>.

	failUrl
	AN..512
	no
	The address to which the user is to be redirected in case of a failed payment. The address must be specified in full including the protocol used (for example, https://test.ru instead of test.ru). Otherwise, the user will be redirected to the address of the following type: http://<payment_gateway_address>/<merchant_address>.

	description
	ANS..512
	no
	Description of the order in any format

	language
	A2
	no
	Language in the ISO 639-1 encoding. If the language is not specified, the default language specified in the store settings is used.

	pageView
	ANS..20
	no
	By the value of this parameter, it is defined what pages of the payment interface are to be loaded for the customer. The possible values are:
· DESKTOP – to load pages the layout of which is designed to be displayed on displays of PCs (a search for pages with the payment_<locale>.html and errors_<locale>.htmlnames will be executed in the archive of payment interface pages);
· MOBILE – to load pages the layout of which is designed to be displayed on displays of mobile devices (a search for pages with the mobile_payment_<locale>.html and mobile_errors_<locale>.html names will be carried out in the archive of payment interface pages);
· If a store has created payment interface pages with arbitrary prefixes added to the names of page files, pas the value of the necessary prefix in the pageView parameter to load corresponding pages. For example on passing the iphone value, a search will be carried out in the archive of payment interface pages for pages with the iphone_payment_<locale>.html and iphone_error_<locale>.html names.
Where:
locale – the language of the page in ISO 639-1. For example, ru for Russian or en for English.
If a parameter is missing or does not match the format, it is considered that by default pageView=DESKTOP.

	clientId
	AN..255
	no
	Identifier of the customer in the store system. This parameter is used for the binding functionality. It can be present if creating bindings is allowed for the store.
	Specifying this parameter when processing payments with the use of bindings is mandatory. Otherwise, a payment will be unsuccessful.

	merchantLogin
	AN..255
	no
	To register an order on behalf of a child merchant, specify the merchant login in this parameter.

	jsonParams
	AN..1024
	no
	Block for passing merchant parameters. The additional information fields for the subsequent storage are passed in the following way:
{"<name1>":"<value1>",...,"<nameN>":"<valueN>"},
These fields can be passed to the Bank processing system to be subsequently displayed in the registers.*
Enabling the functionality is possible upon agreement with the Bank during the integration period.
If sending notifications to a customer is configured for a merchant, the customer's email address must be passed in this block in the email parameter.

	On payments for housing and utilities services it is necessary to pass the following additional parameters:
· payment_doc_id - the identifier of the payment document;
· order_num - the order number.

	sessionTimeoutSecs
	N...9
	no
	Order lifetime in seconds.
If the parameter is not specified, the value specified in the merchant settings or the default value (1200 seconds = 20 minutes) will be used.
If the expirationDate parameter is present in the request, the value of the sessionTimeoutSecs parameter is ignored.

	expirationDate
	ANS
	no
	The date and time of the order lifetime expiration. The format used is: yyyy-MM-ddTHH:mm:ss.
If this parameter is not passed in the request, sessionTimeoutSecs is used to define the time of the order lifetime expiration.

	bindingId
	AN..255
	no
	Identifier of the binding created earlier. It can be used only if the store has the permission to work with bindings. If this parameter is passed in the given request, it means that:
1. The given order can be paid only using a binding;
2. The payer will be redirected to the payment page on which only entering CVC is required.

	features
	ANS..255
	no
	It is possible to use the following values.
AUTO_PAYMENT - if the order registration request initiates executing auto-payments.
VERIFY - If this parameter is specified after the order registration request, the cardholder is to be verified without debiting funds from the cardholder account. Thus it is possible to pass a zero amount in the request. This verification allow the merchant to ensure that a card is used by the cardholder and to debit this card in the future without verifying authentication data (CVC, 3D-Secure) on processing subsequent payments.

	The details of passing the VERIFY value
· Even if the payment amount is to be passed in the request, it will not be debited from the account.
· After the order has been successfully registered, it is passed to the REVERSED (cancelled) status.

* By default, the following fields are passed to the Bank processing system:
·
· orderNumber – the order number in the store system;
· description – the order description (no more than 99 symbols, it is forbidden to use %, +, an end of line \r and line break \n).
If the additional parameter merchantOrderId is passed in an order, its value is to be passed to the processing system of the Bank as an order number (instead of the value in the orderNumber field).
Response parameters:
	Name
	Type
	Mandatory
	Description

	orderId
	ANS36
	No
	Identifier of the order in the payment system. It is unique within the system. The parameter is missing if the order registration failed due to an error detailed in errorCode.

	formUrl
	AN..512
	No
	URL of the payment form to which the customer's browser is to be redirected. The parameter is not returned if the order registration failed due to an error detailed in errorCode.

	errorCode
	N3
	No
	Error code.

	errorMessage
	AN..512
	no
	Error description in the language passed in the language parameter in the request.

Error codes (the errorCode field):
	Value
	Description

	0
	The request has been processed without system errors.

	1
	An order with this identifier has already been processed

	1
	An order with this number has been registered, but has not been paid

	1
	Unknown order ID

	3
	Unknown currency

	4
	Order number cannot be empty

	4
	Merchant name cannot be empty

	4
	Amount is missing

	4
	Return URL cannot empty

	4
	Password cannot be empty

	5
	Merchant login is incorrect

	5
	Incorrect amount

	5
	Language parameter is incorrect

	5
	Access denied

	5
	The user must change the password

	5
	Access denied

	5
	[jsonParams] is incorrect

	7
	System error

	13
	Using both values, Features FORCE_TDS/FORCE_SSL and AUTO_PAYMENT, is not allowed

	13
	The merchant does not have the permission to process auto-payments

	13
	The merchant does not have the permission to process verification payments

	14
	Features are specified incorrectly

An example of the GET request:
	https://web.rbsuat.com/ab//rest/register.do?amount=100¤cy=810&language=ru&orderNumber=87654321&password=password&returnUrl=https://web.rbsuat.com/ab/finish.html&userName=userName&{jsonParams="param1":"value1","param2":"value2"}&pageView=DESKTOP&expirationDate=2014-09-08T14:14:14&merchantLogin=merch_child&features=AUTO_PAYMENT

An example of the POST request:
	amount=100¤cy=810&language=ru&orderNumber=87654321&returnUrl=https://web.rbsuat.com/ab/finish.html&pageView=DESKTOP&{jsonParams="param1":"value1","param2":"value2"}&expirationDate=2014-09-08T14:14:14&merchantLogin=merch_child&features=AUTO_PAYMENT

Response example:
	{"orderId":"70906e55-7114-41d6-8332-4609dc6590f4","formUrl":"https://web.rbsuat.com/ab/merchants/test/payment_ru.html?mdOrder=70906e55-7114-41d6-8332-4609dc6590f4"}

[bookmark: scroll-bookmark-199][bookmark: _Toc256000104][bookmark: scroll-bookmark-139]Registration request for orders with pre-authorization
The registerPreAuth.do request is used to register an order with pre-authorization (see the Connection URLs section).
Request examples:
	Name
	Type
	Mandatory
	Description

	userName
	AN..30
	yes
	Store login received on the connection

	password
	AN..30
	yes
	Store password received on the connection

	orderNumber
	AN..32
	yes
	Identifier of an order in the store system, it is unique for each store within the system

	amount
	N..20
	yes
	Payment amount in the minor denomination (cents or kopeks)

	currency
	N3
	no
	ISO 4217 code of the payment currency. If this parameter is not specified, it is considered to be equal to the default currency code.

	returnUrl
	AN..512
	yes
	The address to which the user is to be redirected in case of a successful payment. The address must be specified in full including the protocol used (for example, https://test.ru instead of test.ru). Otherwise, the user will be redirected to the address of the following type: http://<payment_gateway_address>/<merchant_address>.

	failUrl
	AN..512
	no
	The address to which the user is to be redirected in case of a failed payment. The address must be specified in full including the protocol used (for example, https://test.ru instead of test.ru). Otherwise, the user will be redirected to the address of the following type: http://<payment_gateway_address>/<merchant_address>.

	description
	ANS..512
	no
	Description of the order in any format

	language
	A2
	no
	Language in the ISO 639-1 encoding. If the language is not specified, the default language specified in the store settings is used

	pageView
	ANS..20
	no
	By the value of this parameter, it is defined what pages of the payment interface are to be loaded for the customer. The possible values are:
· DESKTOP – to load pages the layout of which is designed to be displayed on displays of PCs (a search for pages with the payment_<locale>.html and errors_<locale>.htmlnames will be executed in the archive of payment interface pages);
· MOBILE – to load pages the layout of which is designed to be displayed on displays of mobile devices (a search for pages with the mobile_payment_<locale>.html and mobile_errors_<locale>.html names will be carried out in the archive of payment interface pages);
· If a store has created payment interface pages with arbitrary prefixes added to the names of page files, pas the value of the necessary prefix in the pageView parameter to load corresponding pages. For example on passing the iphone value, a search will be carried out in the archive of payment interface pages for pages with the iphone_payment_<locale>.html and iphone_error_<locale>.html names.
Where:
locale – the language of the page in ISO 639-1. For example, ru for Russian or en for English.
If a parameter is missing or does not match the format, it is considered that by default pageView=DESKTOP.

	clientId
	AN..255
	no
	Identifier of the customer in the store system. This parameter is used for the binding functionality. It can be present if creating bindings is allowed for the store.
	Specifying this parameter when processing payments with the use of bindings is mandatory. Otherwise, a payment will be unsuccessful.

	merchantLogin
	AN..255
	no
	To register an order on behalf of a child merchant, specify the merchant login in this parameter.

	jsonParams
	AN..1024
	no
	Block for passing merchant parameters. The additional information fields for the subsequent storage are passed in the following way:
{"<name1>":"<value1>",...,"<nameN>":"<valueN>"},
These fields can be passed to the Bank processing system to be subsequently displayed in the registers.*
Enabling the functionality is possible upon agreement with the Bank during the integration period.
If sending notifications to a customer is configured for a merchant, the customer's email address must be passed in this block in the email parameter.

	sessionTimeoutSecs
	N...9
	no
	Order lifetime in seconds.
If the parameter is not specified, the value specified in the merchant settings or the default value (1200 seconds = 20 minutes) will be used.
If the expirationDateparameter is present in the request, the value of the sessionTimeoutSecs parameter is ignored.

	expirationDate
	ANS
	no
	The date and time of the order lifetime expiration. The format used is: yyyy-MM-ddTHH:mm:ss.
If this parameter is not passed in the request, sessionTimeoutSecs is used to define the time of the order lifetime expiration.

	bindingId
	AN..255
	no
	Identifier of the binding created earlier. It can be used only if the store has the permission to work with bindings. If this parameter is passed in the given request, it means that:
1. The given order can be paid only using a binding;
2. The payer will be redirected to the payment page on which only entering CVC is required.

	features
	ANS..255
	no
	It is possible to use the following values.
AUTO_PAYMENT - if the order registration request initiates executing auto-payments.
VERIFY - If this parameter is specified after the order registration request, the cardholder is to be verified without debiting funds from the cardholder account. Thus it is possible to pass a zero amount in the request. This verification allow the merchant to ensure that a card is used by the cardholder and to debit this card in the future without verifying authentication data (CVC, 3D-Secure) on processing subsequent payments.

	The details of passing the VERIFY value
· Even if the payment amount is to be passed in the request, it will not be debited from the account.
· After the order has been successfully registered, it is passed to the REVERSED (cancelled) status.

* By default, the following fields are passed to the Bank processing system:
·
·
· orderNumber – the order number in the store system;
· description – the order description (no more than 99 symbols, it is forbidden to use %, +, an end of line \r and line break \n).
If the additional parameter merchantOrderId is passed in an order, its value is to be passed to the processing system of the Bank as an order number (instead of the value in the orderNumber field).
Response parameters:
	Name
	Type
	Mandatory
	Description

	orderId
	ANS36
	No
	Identifier of the order in the payment system. It is unique within the system. The parameter is missing if the order registration failed due to an error detailed in errorCode.

	formUrl
	AN..512
	No
	URL of the payment form to which the customer's browser is to be redirected. The parameter is not returned if the order registration failed due to an error detailed in errorCode.

	errorCode
	N3
	No
	Error code.

	errorMessage
	AN..512
	no
	Error description in the language passed in the language parameter in the request.

Error codes (the errorCode field):
	Value
	Description

	0
	The request has been processed without system errors.

	1
	An order with this identifier has already been processed

	1
	An order with this number has been registered, but has not been paid

	1
	Unknown order ID

	3
	Unknown currency

	4
	Order number cannot be empty

	4
	Merchant name cannot be empty

	4
	Amount is missing

	4
	Return URL cannot empty

	4
	Password cannot be empty

	5
	Incorrect amount

	5
	Language parameter is incorrect

	5
	Merchant login is incorrect

	5
	Access denied

	5
	The user must change the password

	5
	Access denied

	5
	[jsonParams] is incorrect

	7
	System error

	13
	Using both values, Features FORCE_TDS/FORCE_SSL and AUTO_PAYMENT, is not allowed

	13
	The merchant does not have the permission to process auto-payments

	13
	The merchant does not have the permission to process verification payments

	14
	Features are specified incorrectly

An example of the GET request:
	https://web.rbsuat.com/ab/rest/registerPreAuth.do?amount=100¤cy=810&language=ru&orderNumber=87654321&password=password&returnUrl=https://web.rbsuat.com/ab/finish.html&userName=userName&{jsonParams="param1":"value1","param2":"value2"}&pageView=MOBILE&merchantLogin=merch_child&features=AUTO_PAYMENT

An example of the POST request:
	amount=100¤cy=810&language=ru&orderNumber=87654321&returnUrl=https://web.rbsuat.com/ab/finish.html&pageView=MOBILE&{jsonParams="param1":"value1","param2":"value2"}&merchantLogin=merch_child&features=AUTO_PAYMENT

Response example:
	{"orderId":"61351fbd-ac25-484f-b930-4d0ce4101ab7","formUrl":"https://web.rbsuat.com/ab/merchants/test/mobile_payment_ru.html?mdOrder=61351fbd-ac25-484f-b930-4d0ce4101ab7"}

[bookmark: scroll-bookmark-201][bookmark: _Toc256000105][bookmark: scroll-bookmark-140]Order payment completion request
The deposit.do request is used to complete an earlier pre-authorized order.
This operation can be executed provided that you have the corresponding permissions in the system.
Request examples:
	Name
	Type
	Mandatory
	Description

	userName
	AN..30
	yes
	Store login received on the connection

	password
	AN..30
	yes
	Store password received on the connection

	orderId
	ANS36
	yes
	Identifier of the order in the payment system. It is unique within the system.

	amount
	N..20
	yes
	Payment amount in the minor denomination (cents or kopeks)

	If the amount parameter is set to zero, the completion is done for the whole pre-authorized amount.

Response parameters:
	Name
	Type
	Mandatory
	Description

	errorCode
	N3
	No
	Error code.

	errorMessage
	AN..512
	No
	Description of the error in the language specified in the language parameter.

Error codes (the errorCode field):
Classification of error codes:
	Value
	Description

	0
	The request has been processed without system errors.

	5
	Incorrect value of a request parameter

	6
	Unregistered OrderId

	7
	System error

Meaning of the error codes:
	Value
	Description

	5
	Access denied

	5
	The user must change the password

	5
	Incorrect amount

	5
	The deposit amount must be equal to zero or not less than one rouble

	6
	Unknown order ID

	7
	Payment must be in the correct status

	7
	System error

An example of the GET request:
	https://web.rbsuat.com/ab/rest/deposit.do?amount=100¤cy=810&language=ru&orderId=e5b59d3d-746b-4828-9da4-06f126e01b68&password=password&userName=userName

An example of the POST request:
	amount=100¤cy=810&language=ru&orderId=e5b59d3d-746b-4828-9da4-06f126e01b68

Response example:
	{"errorCode":0}

[bookmark: scroll-bookmark-183][bookmark: _Toc256000106][bookmark: scroll-bookmark-141]Order status request
The getOrderStatus.do is used to get the current order status.
The order status is defined by the value of the OrderStatus parameter.
The authCode field is obsolete.
Request examples:
	Name
	Type
	Mandatory
	Description

	userName
	AN..30
	yes
	Store login received on the connection

	password
	AN..30
	yes
	Store password received on the connection

	orderId
	ANS36
	yes
	Identifier of the order in the payment system. It is unique within the system.

	language
	A2
	no
	Language in the ISO 639-1 encoding. If this parameter is not specified, it is considered that the language is Russian. An error message will be returned in this language.

Response parameters:
	Name
	Type
	Mandatory
	Description

	OrderStatus
	N2
	No
	The status of the order in the payment system is defined by the value of this parameter. The list of available values is presented in the table below. It is missing if the order has not been found.

	ErrorCode
	N3
	No
	Error code.

	ErrorMessage
	AN..512
	No
	Error description in the language passed in the Language parameter of the request.

	OrderNumber
	AN..32
	Yes
	Order identifier in the store system

	Pan
	N..19
	no
	Masked number of the card that has been used for the payment. This parameter is to be specified only after the order has been paid.

	expiration
	N6
	no
	Card expiration . This parameter is to be specified only after the order has been paid.

	cardholderName
	A..64
	no
	Name of the cardholder. This parameter is to be specified only after the order has been paid.

	Amount
	N..20
	yes
	Payment amount in the minor denomination (cents or kopeks)

	currency
	N3
	no
	ISO 4217 code of the payment currency. If the code is not specified, the default value is 810 (Russian roubles).

	approvalCode
	AN6
	no
	IPS authorization code. This field has a fixed length (six symbols) and can contain digits and Latin letters.

	authCode
	N3
	no
	This field is obsolete. Its value is always equal to"2" regardless the order status and the authorization code of the processing system.

	Ip
	AN..20
	no
	IP address of the user who has paid the order

	BindingInfo element:
	
	
	

	clientId
	AN..255
	no
	Identifier of the customer in the store system passed on the order registration. This parameter is present only if a store has the permission to create bindings.

	bindingId
	AN..255
	no
	Identifier of a binding created on an order payment or used to pay for an order. This parameter is present only if a store has the permission to create bindings.

The OrderStatus field can have the following values:
	Status number
	Description

	0
	The order has been registered but not paid

	1
	The pre-authorized amount has been put on hold (for two-phase payments)

	2
	Full authorization of the order amount has been performed

	3
	Authorization is cancelled

	4
	A refund operation has been processed for the transaction

	5
	Authorization through ACS of the issuing bank has been initiated

	6
	Authorization is declined

Error codes (the ErrorCode field):
	Value
	Description

	0
	The request has been processed without system errors.

	2
	Order is declined because of an error in the payment details

	5
	Access denied

	5
	The user must change the password

	5
	[orderId] is not specified

	6
	Unknown order ID

	7
	System error

An example of the GET request:
	https://web.rbsuat.com/ab/rest/getOrderStatus.do?orderId=b8d70aa7-bfb3-4f94-b7bb-aec7273e1fce&language=ru&userName=userName&password=password

An example of the POST request:
	orderId=b8d70aa7-bfb3-4f94-b7bb-aec7273e1fce&language=ru

Response example:
	{"expiration":"201512","cardholderName":"tr tr","depositAmount":789789,"currency":"810","approvalCode":"123456","authCode":2,"clientId":"666","bindingId":"07a90a5d-cc60-4d1b-a9e6-ffd15974a74f","ErrorCode":"0","ErrorMessage":"Успешно","OrderStatus":2,"OrderNumber":"23asdafaf","Pan":"411111**1111","Amount":789789}

[bookmark: scroll-bookmark-185][bookmark: _Toc256000107][bookmark: scroll-bookmark-142]Extended order status request
The getOrderStatusExtended.do request is used to request the status of a registered order.
Request parameters:
	Name
	Type
	Mandatory
	Description

	userName
	AN..30
	yes
	Store login received on the connection

	password
	AN..30
	yes
	Store password received on the connection

	orderId
	ANS36
	yes*
	Identifier of the order in the payment system. It is unique within the system.

	orderNumber
	AN..32
	yes*
	Order identifier in the store system.

	language
	A2
	no
	Language in the ISO 639-1 encoding. If this parameter is not specified, it is considered that the language is Russian. An error message will be returned in this language.

* Either orderId or orderNumber must be present in the request. If both parameters are present in the request, orderId is prioritized.
Several sets of response parameters exist. It depends of the version of getOrderStatusExtended specified in the merchant settings, what sets of parameters are to be returned.
	Name
	Type
	Mandatory
	Description
	Version of getOrderStatusExtended

	orderNumber
	AN..32
	yes
	Order identifier in the store system.
	All versions.

	orderStatus
	N2
	no
	The order status in the payment system is defined by the value of this parameter. The available values are: given in the list below. It is missing if the order has not been found.
· 0 - the order is registered, but not paid;
· 1 - the pre-authorized amount is put on hold (for two-phase payments);
· 2 - a full authorization of the order amount has been performed;
· 3 - the authorization was cancelled;
· 4 - a refund operation has been processed for the transaction;
· 5 - an authorization through ACS of the issuing bank has been initiated;
· 6 - the authorization was declined

	All versions.

	actionCode
	N3
	yes
	Response code.
	All versions.

	actionCodeDescription
	AN..512
	yes
	Explanation of the response code in the language passed in the Language parameter of the request.
	All versions.

	errorCode
	N3
	no
	Error code. The following values are available.
· 0 - the request has been processed without system errors.;

· 1 - [orderid] or [ordernumber] is expected;

· 5 - access denied;

· 5 - the user must change the password;

· 6 - order is not found;

· 7 - a system error.

	All versions.

	errorMessage
	AN..512
	no
	Error description in the language passed in the Language parameter of the request.
	All versions.

	amount
	N..20
	yes
	Payment amount in the minor denomination (cents or kopeks)
	All versions.

	currency
	N3
	no
	ISO 4217 code of the payment currency. If the code is not specified, the default value is 810 (Russian roubles).
	All versions.

	date
	ANS
	yes
	Order registration date.
	All versions.

	orderDescription
	AN..512
	no
	Order description passed on its registration
	All versions.

	ip
	AN..20
	yes
	IP-address of the buyer.
	All versions.

	
The merchantOrderParams element is present in a response if an order contains additional parameters of the merchant. Each additional parameter of an order is present in a separate merchantOrderParams element.

	name
	AN..20
	no
	Name of the additional parameter
	All versions.

	value
	AN..1024
	no
	Value of the additional parameter
	All versions.

	

The cardAuthInfo element contains a structure that consists of a list of the secureAuthInfo element and the following parameters:

	maskedPan
	N..19
	no
	Masked number of the card that has been used for the payment. This parameter is to be specified only after the order has been paid.
	All versions.

	expiration
	N6
	no
	Card expiration . This parameter is to be specified only after the order has been paid.
	All versions.

	cardholderName
	A..64
	no
	Name of the cardholder. This parameter is to be specified only after the order has been paid.
	All versions.

	approvalCode
	AN6
	no
	Payment authorization code. The field has a fixed length (six symbols), it can contain digits and Latin letters. The parameter is specified only after the order has been paid.
	All versions.

	chargeback
	A..5
	no
	The parameter defines whether the funds have been forcibly returned to the buyer by the bank. The available values are:
· true (the funds have been refunded);
· false (the funds have not been refunded).

	06 and higher.

	paymentSystem
	N..10
	yes
	The payment system name. The available values are:
· VISA;
· MASTERCARD;
· AMEX;
· JCB;
· CUP;
· MIR.

	08 and higher.

	product
	AN..255
	yes
	Additional details on corporate cards. These details are filled in by the technical support service through the administrative console. If such details are missing, an empty value is returned.
	08 and higher.

	paymentWay
	AS..14
	yes
	The method of order completion (a payment with entering card data, a payment using a binding, etc.).
	09 and higher.

	

The secureAuthInfo element (the element consists of the eci and threeDSInfo elements that are the lists of the cavv and xid parameters):

	eci
	N..4
	no
	Electronic Commerce Indicator. The indicator is specified only after an order has been paid and in case the corresponding permission is present.
	All versions.

	cavv
	ANS..200
	no
	The value for the cardholder and card authentication check. The indicator is specified only after an order has been paid and in case the corresponding permission is present.
	All versions.

	xid
	ANS..80
	no
	Electronic Commerce Indicator of the transaction. The indicator is specified only after an order has been paid and in case the corresponding permission is present.
	All versions.

	

The bindingInfo element consists of these parameters:

	clientId
	AN..255
	no
	Identifier of the customer in the store system passed on the order registration. This parameter is present only if a store has the permission to create bindings.
	All versions.

	bindingId
	AN..255
	no
	Identifier of a binding created on an order payment or used to pay for an order. This parameter is present only if a store has the permission to create bindings.
	All versions.

	authDateTime
	ANS
	no
	The authorization date and time.
	02 and higher.

	authRefNum
	AN..24
	no
	Reference number.
	02 and higher.

	terminalId
	AN..10
	no
	Terminal ID.
	02 and higher.

	The paymentAmountInfo element consists of these parameters:

	approvedAmount
	N..20
	no
	The amount put on hold on the card (is used only for two-phase payments).
	03 and higher.

	depositedAmount
	N..20
	no
	The amount confirmed for debiting from the card.
	03 and higher.

	refundedAmount
	N..20
	no
	The refund amount.
	03 and higher.

	paymentState
	A..10
	no
	The order status.
	03 and higher.

	feeAmount
	N..20
	no
	The fee amount.
	11 and higher.

	The bankInfo element consists of these parameters:

	bankName
	AN..200
	no
	Name of the issuing bank.
	03 and higher.

	bankCountryCode
	AN..4
	no
	Country codes of the issuing bank.
	03 and higher.

	bankCountryName
	AN..160
	no
	Name of the country of the issuing bank passed in the language parameter of the request or in the language of the user who has called the method if the language has not been specified in the request.
	03 and higher.

An example of the GET request:

	https://web.rbsuat.com/ab/rest/getOrderStatusExtended.do?userName=userName&password=password&orderId=b9054496-c65a-4975-9418-1051d101f1b9&language=ru&merchantOrderNumber=0784sse49d0s134567890

An example of the POST request:
	orderId=b9054496-c65a-4975-9418-1051d101f1b9&language=ru&merchantOrderNumber=0784sse49d0s134567890

Response example:
	{"errorCode":"0","errorMessage":"Success","orderNumber":"0784sse49d0s134567890","orderStatus":6,"actionCode":-2007,"actionCodeDescription":"Время сессии истекло","amount":33000,"currency":"810","date":1383819429914,"orderDescription":" ","merchantOrderParams":[{"name":"email","value":"yap"}],"attributes":[{"name":"mdOrder","value":"b9054496-c65a-4975-9418-1051d101f1b9"}],"cardAuthInfo":{"expiration":"201912","cardholderName":"Ivan","secureAuthInfo":{"eci":6,"threeDSInfo":{"xid":"MDAwMDAwMDEzODM4MTk0MzAzMjM="}},"pan":"411111**1111"},"terminalId":"333333"}

[bookmark: scroll-bookmark-187][bookmark: _Toc256000108][bookmark: scroll-bookmark-143]Order payment cancellation request
The reverse.do request is used to cancel a payment for an order. The cancellation function is available within a limited time period after a payment has been processed. The exact duration should be found out from the bank.
The cancellation operation can be executed only once. If it ends with an error, a repetitive cancellation operation will not be processed.
This functionality is available for a merchant upon agreement with the Bank. To execute a cancellation operation, a user needs to have the corresponding permissions.
Request examples:
	Name
	Type
	Mandatory
	Description

	userName
	AN..30
	yes
	Store login received on the connection

	password
	AN..30
	yes
	Store password received on the connection

	orderId
	ANS36
	yes
	Identifier of the order in the payment system. It is unique within the system.

	language
	A2
	no
	Language in the ISO 639-1 encoding. The error description is returned in this language. If the parameter is missing, the default language specified in the merchant settings is used.

Response parameters:
	Name
	Type
	Mandatory
	Description

	errorCode
	N3
	No
	Error code.

	errorMessage
	AN..512
	No
	Description of the error in the language specified in the language parameter.

Error codes (the ErrorCode field):

Classification of error codes:
	Value
	Description

	0
	The request has been processed without system errors.

	5
	Incorrect value of a request parameter

	6
	Unregistered OrderId

	7
	System error

Meaning of the error codes:
	Value
	Description

	0
	The request has been processed without system errors.

	5
	Access denied

	5
	The user must change the password

	5
	[orderId] is not specified

	6
	Unknown order ID

	7
	Operation is impossible for the current payment status

	7
	Reversal is impossible because of incorrect internal parameter values. Check the amount put on hold and the deposit amount

	7
	System error

An example of the GET request:
	https://web.rbsuat.com/ab/rest/reverse.do?language=ru&orderId=9231a838-ac68-4a3e-bddb-d9781433d852&password=password&userName=userName

An example of the POST request:
language=ru&orderId=9231a838-ac68-4a3e-bddb-d9781433d852
Response example:
	{"errorCode":"0","errorMessage":"Success"}

[bookmark: scroll-bookmark-189][bookmark: _Toc256000109][bookmark: scroll-bookmark-144]Order payment refund request
The refund.do request is used to return funds.
Upon this request, the funds for the specified order are to be returned to the payer. The request will end with an error if the funds have not been debited for this order. The system permits returning funds more than once, but for a total amount not exceeding the initial debit amount.
	When processing a refund for a payment for housing and utilities services, only a full refund is available.

To process a refund operation, it is necessary to have the corresponding permissions in the system.
Request parameters:
	Name
	Type
	Mandatory
	Description

	userName
	AN..30
	yes
	Store login received on the connection

	password
	AN..30
	yes
	Store password received on the connection

	orderId
	ANS36
	yes
	Identifier of the order in the payment system. It is unique within the system.

	amount
	N..20
	yes
	Payment amount in the minor denomination (cents or kopeks)

Response parameters:
	Name
	Type
	Mandatory
	Description

	errorCode
	N3
	No
	Error code.

	errorMessage
	AN..512
	No
	Description of the error in the language specified in the language parameter.

Error codes (the errorCode field):
Classification of error codes:
	Value
	Description

	0
	The request has been processed without system errors.

	5
	Incorrect value of a request parameter

	6
	Unregistered OrderId

	7
	System error

Meaning of the error codes:
	Value
	Description

	0
	The request has been processed without system errors.

	5
	Access denied

	5
	The user must change the password

	5
	[orderId] is not specified

	6
	Unknown order ID

	7
	Payment must be in the correct status

	7
	Incorrect deposit amount (less than one rouble)

	7
	System error

An example of the GET request:
	https://web.rbsuat.com/ab/rest/refund.do?amount=500¤cy=810&language=ru&orderId=5e97e3fd-1d20-4b4b-a542-f5995f5e8208&password=password&userName=userName

An example of the POST request:
	amount=500¤cy=810&language=ru&orderId=5e97e3fd-1d20-4b4b-a542-f5995f5e8208

Response example:
	{"errorCode":0}

[bookmark: scroll-bookmark-191][bookmark: _Toc256000110][bookmark: scroll-bookmark-145]Request for checking a card for enrolment to 3D-Secure
The verifyEnrollment.do request is used to check a card for enrolment to 3D-Secure.
Request parameters:
	Name
	Type
	Mandatory
	Description

	userName
	AN..30
	yes
	User login (API)

	password
	AN..30
	yes
	User password (API)

	pan
	N12...19
	yes
	Card number

Response parameters:
	Name
	Type
	Mandatory
	Description

	errorCode
	N3
	no
	Error code.

	errorMessage
	AN..512
	no
	Error description.

	enrolled
	A1
	no
	The flag signifying enrolment of the card to 3D-Secure. The available values are: Y, N, U.

	emitterName
	AN..160
	no
	Name of the issuing bank.

	emitterCountryCode
	AN..4
	no
	Country codes of the issuing bank.

Error codes (the errorCode fields):
	Value
	Description

	0
	The request has been processed without system errors.

	1
	The card number is not specified

	1
	The card number must be a number containing 13 to 19 digits

	5
	The user must change the password.

	5
	Access denied

	6
	Information is not found for the card number specified.

	7
	System error.

An example of the GET request:
	https://web.rbsuat.com/ab/rest/verifyEnrollment.do?userName=userName&password=password&pan=4111111111111111

An example of the POST request:
	pan=4111111111111111

Response example:
	{"errorCode":"0","errorMessage":"Success","emitterName":"TEST CARD","emitterCountryCode":"RU","enrolled":"Y"}

[bookmark: scroll-bookmark-193][bookmark: _Toc256000111][bookmark: scroll-bookmark-146]Request for adding additional parameters to an order
The addParams.do method is used to add to an order additional parameters.
If an additional parameter already exists in the order, the value most recently passed is saved to the order when adding a parameter with the same name.
Request examples:
	Name
	Type
	Mandatory
	Description

	userName
	AN..30
	yes
	Store login received on the connection

	password
	AN..30
	yes
	Store password received on the connection

	orderId
	ANS36
	yes
	Identifier of the order in the payment system. It is unique within the system.

	language
	A2
	no
	Language in the ISO 639-1 encoding. The error description is returned in this language. If the parameter is missing, the default language specified in the merchant settings is used.

	params
	AN..1024
	yes
	Fields to pass additional parameters of the following type: {"param":"value","param2":"value2"}.

Response parameters
	Name
	Type
	Mandatory
	Description

	errorCode
	N3
	yes
	Error code.

	errorMessage
	AN..512
	no
	Error description. It is missing when a request is processed unsuccessfully.

Error codes (the ErrorCode field):
	Value
	Description

	0
	The request has been processed without system errors.

	5
	Access denied

	5
	The user must change the password

	6
	orderId is not specified

	6
	Unknown order ID

	7
	System error

An example of the GET request:
	https://web.rbsuat.com/ab/rest/addParams.do?language=ru&orderId=769b8dad-2318-4c01-bfc4-94532522fa68&password=password&userName=userName¶ms={"addParams1":"value1","addParams2":"value2"}

An example of the POST request:
	language=ru&orderId=769b8dad-2318-4c01-bfc4-94532522fa68¶ms={"addParams1":"value1","addParams2":"value2"}

Response example:
	{"errorCode":0}

[bookmark: scroll-bookmark-195][bookmark: _Toc256000112][bookmark: scroll-bookmark-147]Request for payments statistics for a period
The getLastOrdersForMerchants.do method allows you to get the payment statistics for a specified period.
Request examples:
	Name
	Type
	Mandatory
	Description

	userName
	AN..30
	yes
	Store login received on the connection.

	password
	AN..30
	yes
	Store password received on the connection.

	language
	A2
	no
	Language in the ISO 639-1 encoding. If this parameter is not specified, it is considered that the language is Russian. An error message will be returned in this language.

	page
	N
	no
	When processing the request, a list is formed that is broken down into pages (with the number of records on each page equal to size). A page with the number that was specified in the page parameter is returned in the response. The pages numbering starts from 0.
If the parameter is not specified, a page with the number 0 is returned.

	size
	N..3
	yes
	Number of elements on a page (the maximum value = 200).

	c
	ANS
	yes
	The date and time when the period of collecting orders starts, in the format YYYYMMDDHHmmss.

	по
	ANS
	yes
	The date and time when the period of collecting orders ends, in the format YYYYMMDDHHmmss.

	transactionStates
	A..9
	yes
	In this block, it is necessary to list the required order statuses. Only orders in one of the specified statuses are included into the report.
If there are several values, they are separated by commas. The available values are: CREATED, APPROVED, DEPOSITED, DECLINED, REVERSED, REFUNDED.

	merchants
	ANS
	yes
	List of logins of the merchant whose transactions are included into the report. If there are several values, they are separated by commas.
Leave this field empty to get the list of reports on all the available merchants (child merchants and merchants specified in the settings of the user).

	searchByCreatedDate
	boolean
	no
	The possible values are:
· true – a search for orders that have the creation date that falls into the specified period.
· false – a search for orders that have the payment date that falls into the specified period (thus, orders in the CREATED or DECLINED status cannot be present in the report).
The default value is false .

Response parameters:
	Name
	Type
	Mandatory
	Description

	errorCode
	N..2
	yes
	Error code. The description of the available codes is presented below in the Error codes (the errorCode field) table

	errorMessage
	AN..512
	no
	Error description. It is present only an error is present (errorCode is not equal to 0).

	orderStatuses
	
	
	Block that contains the information on the orders included into the report. See the orderStatuses block parameters table below.

	totalCount
	N
	yes
	Total number of elements in the report (on all pages).

	page
	N
	yes
	Number of the current page (it is equal to the page number passed in the request).

	pageSize
	N..3
	yes
	Maximum number of records on a page (it is equal to the page number passed in the request).

Parameters of the orderStatuses block:
	Name
	Type
	Mandatory
	Description

	orderNumber
	AN..32
	yes
	Order identifier in the store system.

	orderStatus
	N..2
	yes
	Status of the order in the payment system. The available values are given in the orderStatus field: table.

	actionCode
	N..3
	yes
	Response code.

	actionCodeDescription
	AN..512
	yes
	Meaning of the response code.

	amount
	N..20
	yes
	Payment amount in the minor denomination of the currency.

	currency
	N3
	yes
	ISO 4217 code of the payment currency. If it is not specified, it is considered to be equal to the default currency value.

	date
	ANS
	yes
	Order registration date.

	orderDescription
	AN..512
	no
	Order description passed on its registration

	ip
	AN..20
	no
	IP-address of the buyer. It is specified only after a payment.

	errorCode
	N..2
	yes
	Error code.

	merchantOrderParams
	
	no
	Tag containing attributes that contain additional merchant parameters. See the merchantOrderParams block parameters table below.

	attributes
	
	yes
	Attributes of the order in the payment system (order number). See the attributes block parameters table below.

	cardAuthInfo
	
	no
	A tag containing the payment attributes. See the cardAuthInfo block parameters table below.

	bindingInfo
	
	no
	Tag containing the information on the binding with which the payment is performed. See the bindingInfo block parameters table below.

	authDateTime
	ANS
	no
	Authorization date and time

	terminalId
	AN..10
	no
	Terminal ID

	authRefNum
	AN..24
	no
	Reference number

	paymentAmountInfo
	
	no
	Tag containing the information on the confirmation amount, debit amount, and refund amount. See the paymentAmountInfo block parameters table below.

	bankInfo
	
	no
	Tag containing the information on the issuing bank. See the bankInfo block parameters table below.

merchantOrderParams block parameters:
	Name
	Type
	Mandatory
	Description

	name
	AN..20
	yes
	Name of the additional merchant parameter

	value
	AN..1024
	yes
	Value of the additional merchant parameter

attributes block parameters:
	Name
	Type
	Mandatory
	Description

	name
	A7
	yes
	Attribute name is "mdOrder".

	value
	ANS36
	yes
	Attribute value is the order number in the payment system (is unique within the system).

cardAuthInfo block parameters:
	Name
	Type
	Mandatory
	Description

	pan
	N..19
	no
	Masked number of the card that has been used for the payment.

	expiration
	N6
	no
	Card expiration .

	cardholderName
	A..64
	no
	Name of the cardholder.

	approvalCode
	AN6
	no
	Payment authorization code. The field has a fixed length (six symbols), it can contain digits and Latin letters.

bindingInfo block parameters:
	Name
	Type
	Mandatory
	Description

	clientId
	AN..255
	no
	Identifier of the customer in the store system.

	bindingId
	AN..255
	no
	Identifier of the binding used for the payment.

paymentAmountInfo block parameters:
	Name
	Type
	Mandatory
	Description

	paymentState
	N..9
	no
	Payment status

	approvedAmount
	N..20
	no
	Amount confirmed to be debited.

	depositedAmount
	N..20
	no
	Amount confirmed debited from the card.

	refundedAmount
	N..20
	no
	The refund amount.

bankInfo block parameters:
	Name
	Type
	Mandatory
	Description

	bankName
	AN..200
	no
	Name of the issuing bank.

	bankCountryCode
	AN..4
	no
	Code of the issuing bank country

	bankCountryName
	AN..160
	no
	Name of the country of the issuing bank passed in the language parameter of the request or in the language of the user who has called the method if the language has not been specified in the request.

The orderStatus field can have the following values:
	Value
	Description

	0
	The order has been registered but not paid

	1
	The pre-authorized amount has been put on hold (for two-phase payments)

	2
	Full authorization of the order amount has been performed

	3
	Authorization is cancelled

	4
	A refund operation has been processed for the transaction

	5
	Authorization through ACS of the issuing bank has been initiated

	6
	Authorization is declined

Error codes (the errorCode field):
	Value
	Description

	0
	The request has been processed without system errors.

	5
	One of the mandatory fields is not filled in

	5
	Incorrect format of the transactionStates parameter

	5
	Access denied

	7
	System error

	10
	Value of the size parameter exceeds the maximum allowed value

	10
	Insufficient permissions to view transactions for the specified merchant

An example of the GET request:
	https://web.rbsuat.com/ab/rest/getLastOrdersForMerchants.do?userName=userName&password=password&language=ru&page=0&size=100&from=20141009160000&to=20141111000000&transactionStates=DEPOSITED,REVERSED&merchants=SevenEightNine&searchByCreatedDate=false

An example of the POST request:
	language=ru&page=0&size=100&from=20141009160000&to=20141111000000&transactionStates=DEPOSITED,REVERSED&merchants=SevenEightNine&searchByCreatedDate=false

Response example:
	{"errorCode":0,

"orderStatuses":[

{"errorCode":"0","orderNumber":"58drs0Pes459Hdsddd0567a0","orderStatus":2,"actionCode":0,"actionCodeDescription":"The request has been successfully processed","amount":250000,"currency":"810","date":1414485649233,"orderDescription":"Opisanie","ip":"212.5.125.194","merchantOrderParams":[{"name":"registr1","value":"registr1"}],"attributes":[{"name":"mdOrder","value":"f1a3365b-542c-4c8d-b34c-e9a7ee8dbc9c"}],"cardAuthInfo":{"expiration":"201512","cardholderName":"Ivan","approvalCode":"123456","pan":"411111**1111"},"bindingInfo":{"clientId":"666","bindingId":"1eabfb8e-b90e-4dc8-bef6-14bd392b1cec"},"authDateTime":1414485661207,"terminalId":"111113","authRefNum":"111111111111","paymentAmountInfo":{"paymentState":"DEPOSITED","approvedAmount":250000,"depositedAmount":250000,"refundedAmount":0},"bankInfo":{"bankName":"TEST CARD","bankCountryCode":"RU","bankCountryName":"Russia"}},

{"errorCode":"0","orderNumber":"57drs0Pes459Hdsddd0567a0","orderStatus":2,"actionCode":0,"actionCodeDescription":"Запрос успешно обработан","amount":250000,"currency":"810","date":1414485277286,"orderDescription":"Opisanie","ip":"212.5.125.194","merchantOrderParams":[{"name":"registr1","value":"registr1"}],"attributes":[{"name":"mdOrder","value":"09489184-bc5e-44a7-b6c4-3ca1feb8ef69"}],"cardAuthInfo":{"expiration":"201512","cardholderName":"Ivan","approvalCode":"123456","pan":"411111**1111"},"bindingInfo":{"clientId":"666","bindingId":"1eabfb8e-b90e-4dc8-bef6-14bd392b1cec"},"authDateTime":1414485296046,"terminalId":"111113","authRefNum":"111111111111","paymentAmountInfo":{"paymentState":"DEPOSITED","approvedAmount":250000,"depositedAmount":250000,"refundedAmount":0},"bankInfo":{"bankName":"TEST CARD","bankCountryCode":"RU","bankCountryName":"Russia"}}],

"totalCount":2,"page":0,"pageSize":100}

[bookmark: scroll-bookmark-217][bookmark: _Toc256000113][bookmark: scroll-bookmark-148]Request for a payment through an external payment system
The paymentotherway.do request with specific parameters is used to pay for an order through an external payment system. Only the POST request is available.
This operation is available provided that the merchant has the corresponding permissions in the system.
Request examples:
	Name
	Type
	Mandatory
	Description

	userName
	AN..30
	yes
	Store login received on the connection

	password
	AN..30
	yes
	Store password received on the connection

	MDORDER
	ANS36
	yes
	Order number received on its registration

	paymentWay
	ANS..*
	yes
	Payment method is passed in this parameter. The possible values are:
· ALFA_ALFACLICK – for a payment with "Alfa-click" (through the PayByClik system).
· UPOP – for a payment through the UPOP system, for the holders of the China Union Pay cards.

	language
	A2
	no
	Language in the ISO 639-1 encoding. If the language is not specified, the default language specified in the store settings is used.

Response parameters:
	Name
	Type
	Mandatory
	Description

	errorCode
	N1
	yes
	Error code

	error
	ANS..*
	(on an error)
	Error message

	info
	ANS..*
	no
	Result of a payment attempt. The available values are presented below:
· Your payment has been processed, redirecting..
· Payment declined. Check the entered data and that there are enough funds on the card and repeat the operation. Redirecting...
· Sorry, the payment cannot be processed. Redirecting...
· Payment declined. Contact the merchant. Redirecting...
· Payment declined. Contact the bank that issued the card. Redirecting...
· Operation is impossible. Cardholder authentication completed unsuccessfully. Redirecting...
· No connection to the bank. Try again later. Redirecting...
· The data entering period has expired. Redirecting...
· No response from the bank. Try again later. Redirecting...

	redirect
	ANS..*
	no
	Return address after the payment

Error codes (the errorCode fields):
	Value
	Description

	0
	The request has been processed without system errors.

	1
	Payment method is not specified or an incorrect value is entered

	2
	Order is not found

	5
	Session timeout

	5
	Access denied

	5
	The user must change the password

	5
	System error

An example of the POST request:
	language=ru&MDORDER=c96a734c-e2c9-429c-8fda-aaa0030c8a92&paymentWay=ALFA_ALFACLICK

Response example:
	{"redirect":"http://testjmb.alfabank.ru/PayByClick/login.jsp?orderId=b37da970-e2b8-4729-a196-b4c2ab5bb401&backUrl=+","info":"Your
 order is processed, redirecting...","errorCode":0}

[bookmark: scroll-bookmark-213][bookmark: _Toc256000114][bookmark: scroll-bookmark-149]Request for executing a payment by a binding
The paymentOrderBinding.do method is used to process a payment using a binding (see the Connection URLs section).
Request parameters:
	Name
	Type
	Mandatory
	Description

	userName
	AN..30
	yes
	Store login received on the connection.

	password
	AN..30
	yes
	Store password received on the connection.

	mdOrder
	ANS36
	yes
	Identifier of the order in the payment system. It is unique within the system.

	bindingId
	AN..255
	yes
	Identifier of a binding created on an order payment or used to pay for an order. This parameter is present only if a store has the permission to create bindings.

	language
	A2
	no
	Language in the ISO 639-1 encoding. If the language is not specified, the default language specified in the store settings is used.

	ip
	NS..15
	yes
	IP-address of the payer.

	cvc
	N..3
	no
	CVC code.
This parameter is mandatory, if "Can process payments without confirmation of CVC" is not selected for a merchant.

	email
	ANS..*
	no
	Payer's email address.

Response parameters:
	Name
	Type
	Mandatory
	Description

	redirect
	ANS..*
	no
	On a success response in the case of an SSL-payment. URL to which a customer is redirected after a payment.

	info
	ANS..*
	no
	On a successful response. Result of a payment attempt. The available values are presented below:
· Your payment has been processed, redirecting..
· Payment declined. Check the entered data, ensure that there are enough funds on the card. Redirecting...
· The payment cannot be processed. Redirecting...
· Payment declined. Contact the merchant. Redirecting...
· Payment declined. Contact the bank that issued the card. Redirecting...
· Operation is impossible. Cardholder authentication completed unsuccessfully. Redirecting...
· No connection to the bank. Try again later. Redirecting...
· Data entering timeout expiration. Redirecting...
· No response from the bank. Try again later. Redirecting...

	errorCode
	N1
	yes
	Error code.

	errorMessage
	AN..*
	no
	On a response with an error. Error message.

	error
	AN..*
	no
	On a response with an error. Error message.

	acsUrl
	ANS..*
	no
	On a successful response in case of a 3D-Secure payment. URL to redirect to ACS.

	paReq
	ANS..*
	no
	On a successful response in case of a 3D-Secure payment. Payment Authentication Request.

	termUrl
	ANS..*
	no
	On a successful response in case of a 3D-Secure payment. URL to which to return from ACS.

Error codes (the ErrorCode field):
	Value
	Description

	0
	The request has been processed without system errors.

	1
	It is necessary to specify CVC2/CVV2 because the merchant does not have a permission to process payments without CVC

	1
	Incorrect format of CVC

	1
	Incorrect language

	2
	The binding is not found

	2
	Order with this number is not found

	5
	Access denied

	5
	The user who is calling the service must change the password

	7
	System error

An example of the POST request:
	mdOrder=eb49300c-95b7-4dcd-9739-eee6c61f2ac4&bindingId=308042e8-2b28-484a-811e-f786c9776c3b&cvc=123

An example of a success response for an SSL-payment:
	{"redirect":"http://ya.ru?orderId=eb49300c-95b7-4dcd-9739-eee6c61f2ac4","info":"Your payment has been processed, redirecting...","errorCode":0}

An example of a success response for a 3D-Secure payment:
	{"info":"Your payment hes been processed, forwarding...","acsUrl":"https://web.rbsuat.com/ab/acs/auth/start.do","paReq":"eJxVUdtugkAQ/RXCOy7LRdQMa2ixKU28pGrfyTICqSzKpcW/765AbR8mOWcyOWfmDCy74qx9YVXn\npfB1OjF1DQUvk1ykvn48vBgzfcngkFWI4R55WyGDNdZ1nKKWJ74+TVz05tPE8NyZbThOfDJmFjcN\ni55Mz+MJzu25zmAXvOOVwWDEpM/EAjJSqVjxLBYNg5hfn6INcyxvappABgoFVlHIPCA9ABEXyPb4\nhWKVp1mzyQUCuTeBl61oqhubOjaQkUBbnVnWNJcFId5sPuFlAUT1gDy8d61CtdTo8oStw+C7r5W5\nCVNZx9v6ENmyfCBqApK4QWaZ1KXUcjVqLVx7Ycu77n2IC2XOqDqjh3BRDsGj/5eDDLeS2Y+bjwyw\nu5QC5YRU/sVAHts+v6rceCODyfbb7m3bfmzD22dnlycaFHF+DGl0y6hK8z6kFHMZity7l1QEiJIh\nw6PI8GOJ/v3+BweMtyE=","termUrl":"https://web.rbsuat.com/:443/ab/rest/finish3ds.do","errorCode":0}

An example of a response containing an error:
	{"error":"Access denied","errorCode":5,"errorMessage":"Access denied"}

[bookmark: scroll-bookmark-207][bookmark: _Toc256000115][bookmark: scroll-bookmark-150]Request for deactivation of a binding
The unBindCard.do request is used to deactivate an existing binding (see the Connection URLs section).
Request examples:
	Name
	Type
	Mandatory
	Description

	userName
	AN..30
	yes
	Store login received on the connection.

	password
	AN..30
	yes
	Store password received on the connection.

	bindingId
	AN..255
	yes
	Identifier of a binding created on an order payment or used to pay for an order. This parameter is present only if a store has the permission to create bindings.

Response parameters:
	Name
	Type
	Mandatory
	Description

	errorCode
	N3
	no
	Error code.

	errorMessage
	AN..512
	no
	Error description.

Error codes (the errorCode fields):
	Value
	Description

	0
	The request has been processed without system errors.

	2
	Incorrect binding status (when attempting to deactivate an inactive binding)

	2
	The binding is not found

	5
	Access denied

	5
	The user must change the password

	7
	System error

An example of the GET request:
	https://web.rbsuat.com/ab/rest/unBindCard.do?userName=userName&password=password&bindingId=fd3afc57-c6d0-4e08-aaef-1b7cfeb093dc

An example of the POST request:
	bindingId=fd3afc57-c6d0-4e08-aaef-1b7cfeb093dc

Response example:
	{"errorCode":"2","errorMessage":"Binging isn't active"}

[bookmark: scroll-bookmark-209][bookmark: _Toc256000116][bookmark: scroll-bookmark-151]Request for activation of a binding
The bindCard.do request is used to activate a binding that has been deactivated earlier (see the Connection URLs section).
Request parameters:
	Name
	Type
	Mandatory
	Description

	userName
	AN..30
	yes
	Store login received on the connection.

	password
	AN..30
	yes
	Store password received on the connection.

	bindingId
	AN..255
	yes
	Identifier of a binding created on an order payment or used to pay for an order. This parameter is present only if a store has the permission to create bindings.

Response parameters:
	Name
	Type
	Mandatory
	Description

	errorCode
	N3
	no
	Error code.

	errorMessage
	AN..512
	no
	Error description.

Error codes (the errorCode fields):
	Value
	Description

	0
	The request has been processed without system errors.

	2
	Incorrect status of the binding (on an attempt to activate an active binding)

	2
	The binding is not found

	5
	Access denied

	5
	The user must change the password

	7
	System error

An example of the GET request:
	https://web.rbsuat.com/ab/rest/bindCard.do?userName=userName&password=password&bindingId=fd3afc57-c6d0-4e08-aaef-1b7cfeb093dc

An example of the POST request:
	bindingId=fd3afc57-c6d0-4e08-aaef-1b7cfeb093dc

Response example:
	{"errorCode":"2","errorMessage":"Binding is active"}

[bookmark: scroll-bookmark-211][bookmark: _Toc256000117][bookmark: scroll-bookmark-152]Request for changing the validity period of a binding
The extendBinding.do request is used to extend the validity period of a binding (see the Connection URLs section).
Request examples:
	Name
	Type
	Mandatory
	Description

	userName
	AN..30
	yes
	Store login received on the connection.

	password
	AN..30
	yes
	Store password received on the connection.

	bindingId
	ANS36
	yes
	Identifier of a binding created on an order payment or used to pay for an order. This parameter is present only if a store has the permission to create bindings.

	newExpiry
	N6
	yes
	New date (the year and the month) of the end of the validity period of a binding, in the format YYYYMM.

	language
	A2
	no
	Language in the ISO 639-1 encoding. If this parameter is not specified, the default language specified in the store settings is to be used.

Response parameters:
	Name
	Type
	Mandatory
	Description

	errorCode
	N1
	yes
	Completion code

	errorMessage
	ANS..*
	(on an error)
	Error message

Error codes (the errorCode fields):
	Value
	Description

	0
	The request has been processed without system errors.

	1
	One (or several) of the mandatory parameters is not specified or is specified incorrectly

	2
	The binding is not found

	5
	Access denied

	5
	The user must change the password

	7
	System error

An example of the GET request:
	https://web.rbsuat.com/ab/rest/extendBinding.do?userName=userName&password=password&bindingId=1eabfb8e-b90e-4dc8-bef6-14bd392b1cec&newExpiry=201612&language=ru

An example of the POST request:
	bindingId=1eabfb8e-b90e-4dc8-bef6-14bd392b1cec&newExpiry=201612&language=ru

Response example:
	{"errorCode":"0","errorMessage":"Success"}

[bookmark: scroll-bookmark-203][bookmark: _Toc256000118][bookmark: scroll-bookmark-153]Request for the list of binding of a customer
The getBindings.do request is used to get the list of bindings by a customer identifier.
Request parameters:
	Name
	Type
	Mandatory
	Description

	userName
	AN..30
	yes
	Store login received on the connection.

	password
	AN..30
	yes
	Store password received on the connection.

	clientId
	AN..255
	yes
	Identifier of the customer in the store system passed on the order registration. This parameter is present only if a store has the permission to create bindings.

Response parameters:
	Name
	Type
	Mandatory
	Description

	errorCode
	N1
	yes
	Completion code

	errorMessage
	ANS..*
	(on an error)
	Error message

	Binding element (it consists of bindingId, maskedPan and expiryDate):
	
	
	

	bindingId
	AN..255
	no
	Identifier of a binding created on an order payment or used to pay for an order. This parameter is present only if a store has the permission to create bindings.

	maskedPan
	N..19
	no
	Masked number of the card that has been used for the payment. This parameter is to be specified only after the order has been paid.

	expiryDate
	N6
	no
	Card expiration . This parameter is to be specified only after the order has been paid.

Error codes (the errorCode fields):
	Value
	Description

	0
	The request has been processed without system errors.

	1
	[clientId] is not specified

	2
	The information is not found

	5
	Access denied

	5
	The user must change the password

	7
	System error

An example of the GET request:
	https://web.rbsuat.com/ab/rest/getBindings.do?userName=userName&password=password&clientId=client

An example of the POST request:
	clientId=client

Response example:
	{"bindings":[{"bindingId":"fd3afc57-c6d0-4e08-aaef-1b7cfeb093dc","maskedPan":"4000 00** **** **02","expiryDate":"201512"}],"errorCode":"0","errorMessage":"Success"}

[bookmark: scroll-bookmark-205][bookmark: _Toc256000119][bookmark: scroll-bookmark-154]Request for the list of binding of a bank card
Provided that a store has the corresponding permissions, it can get the list of all bindings that relate to a certain bank card. This can be done by a card number or by a known binding identifier.
The getBindingsByCardOrId.do method is used to get the list of bindings of a bank card.
All bindings that are available to the merchant according to the merchant settings are returned in the response.
Request examples:
	Name
	Type
	Mandatory
	Description

	userName
	AN..30
	yes
	Store login received on the connection

	password
	AN..30
	yes
	Store password received on the connection

	pan
	N..19
	no
	Card number. The parameter is mandatory, unless bindingId is specified.
A search by the full number of a card is available to stores only provided that they have the corresponding permission.

	bindingId
	AN..255
	no
	Binding identifier. The parameter is mandatory, unless pan is specified.
If the request contains pan, the bindingId value is ignored.

	showExpired
	boolean
	no
	This parameter defines the necessity to display bindings with expired card validity periods. The available values are: true, false. By default the parameter has the false value.

Response parameters:
	Name
	Type
	Mandatory
	Description

	errorCode
	N1
	yes
	Expiration code.

	errorMessage
	ANS..*
	yes
	Description of the completion code.

	Bindings element (contains blocks that consist of the bindingId, maskedPan, expiryDate and clientId parameters):
	
	
	

	bindingId
	AN..255
	no
	Binding identifier.

	maskedPan
	N..19
	no
	Masked number of the card that has been used for the payment.

	expiryDate
	N6
	no
	The expiration date of the card validity period, in the format YYYYMM.

	clientId
	AN..255
	no
	Number (identifier) of a customer in the merchant system.

Error codes (the errorCode field):
	Value
	Description

	0
	The request has been processed without system errors.

	1
	Neither a card number, nor a binding identifier is specified.

	2
	The information is not found.

	5
	Access denied.

	5
	The user must change the password.

	7
	System error.

Request example:
	https://web.rbsuat.com/ab/rest/getBindingsByCardOrId.do?userName=login&password=password&pan=4111111111111111

Response parameters:
	{"errorCode":"0","errorMessage":"Success","bindings":[{"bindingId":"0b8edeb2-8380-4092-bf7e-1e1a78f2b15e","maskedPan":"411111**1111","expiryDate":"201912","clientId":"12"},{"bindingId":"6a8c0738-cc88-4200-acf6-afc264d66cb0","maskedPan":"411111**1111","expiryDate":"201912","clientId":"666"},{"bindingId":"97a70989-c1fb-49f7-8a42-27c19dc160dw","maskedPan":"411111**1111","expiryDate":"201512","clientId":"666"}]}

[bookmark: scroll-bookmark-197][bookmark: _Toc256000120][bookmark: scroll-bookmark-155]Request for adding a card to the list of SSL-cards
The updateSSLCardList.do request is used to add the number of a card that was used when attempting to pay for an order to the list of SSL-cards.
The method is available only upon agreement with the bank. The user must be assigned the permissions to work with fraud lists.
Request examples:
	Name
	Type
	Mandatory
	Description

	mdorder

	ANS36
	yes
	Identifier of the order in the payment system. It is unique within the system.

Response parameters:
	Name
	Type
	Mandatory
	Description

	errorCode
	N3
	no
	Error code.

	errorMessage
	AN..512
	no
	Description of the error in the default language of the user.

Error codes (the errorCode field):
	Value
	Description

	0
	The request has been processed without system errors.

	1
	Access denied

	2
	The user must change the password

	3
	Order number is not specified

	4
	Payment is absent from the system or an incorrect mdorder is specified

	6
	Card number is already present in the list

	7
	System error

Request example:
	https://web.rbsuat.com/ab/rest/updateSSLCardList.do?mdorder=a4d7d5e5-441d-401c-b25e-bd5d9fffe227&userName=987&password=111111

Response example:
	{"errorCode":"0","errorMessage":"The request has been processed without system errors"}

When registering a merchant, the merchant representative is provided with a login/password couple that must be used in the protocols.

The description of the test service (WSDL) is stored at the following address:
https://web.rbsuat.com/ab/webservices/merchant-ws?wsdl

The URL to access the REST methods:
	Method name
	URL-address

	Order registration
	https://web.rbsuat.com/ab/rest/register.do

	Order registration with pre-authorization
	https://web.rbsuat.com/ab/rest/registerPreAuth.do

	Order payment completion request
	https://web.rbsuat.com/ab/rest/deposit.do

	Order status request
	https://web.rbsuat.com/ab/rest/getOrderStatus.do

	Extended order status request
	https://web.rbsuat.com/ab/rest/getOrderStatusExtended.do

	Order payment cancellation request
	https://web.rbsuat.com/ab/rest/reverse.do

	Order payment refund request
	https://web.rbsuat.com/ab/rest/refund.do

	Request for checking a card for enrolment to 3D-Secure
	https://web.rbsuat.com/ab/rest/verifyEnrollment.do

	Request for adding additional parameters to an order
	https://web.rbsuat.com/ab/rest/addParams.do

	Request for payments statistics for a period
	https://web.rbsuat.com/ab/rest/getLastOrdersForMerchants.do

	Request for a payment through an external payment network
	https://web.rbsuat.com/ab/rest/paymentotherway.do

	Request for adding a card number to the list of SSL-cards
	https://web.rbsuat.com/ab/rest/updateSSLCardList.do

	Request for processing a payment by a binding
	https://web.rbsuat.com/ab/rest/paymentOrderBinding.do

	Request for a binding deactivation
	https://web.rbsuat.com/ab/rest/unBindCard.do

	Request for a binding activation
	https://web.rbsuat.com/ab/rest/bindCard.do

	Request for changing the validity period of a binding
	https://web.rbsuat.com/ab/rest/extendBinding.do

	Request for the list of bindings of a customer
	https://web.rbsuat.com/ab/rest/getBindings.do

	Request for the list of bindings of a certain bank card
	https://web.rbsuat.com/ab/rest/getBindingsByCardOrId.do

	Request for a payment through Apple Pay
	https://web.rbsuat.com/ab/applepay/payment.do

	Request for a recurring payment
	https://web.rbsuat.com/ab/recurrentPayment.do

	Request for a payment through Android Pay
	https://web.rbsuat.com/ab/android/payment.do

	Request for a payment through Samsung Pay
	https://web.rbsuat.com/ab/samsung/payment.do

[bookmark: _Toc256000121][bookmark: scroll-bookmark-156]Request for a payment through Apple Pay
[bookmark: scroll-bookmark-222]Request to the payment gateway for a payment using Apple Pay
The payment.do request is used to register an order (see Connection URLs).
	Use the standard requests to the payment gateway for the operations of cancellation, refund and payment completion.

An example of the POST request is given below

	{"merchant":"merchant_name","orderNumber":"applepay123456794","description":"descritpion_text", "paymentToken":"eyJ2ZXJzaW9uIjoiRUNfdjEiLCJkYXRhIjoiNTFhUTNGOXl0Q1YwYTdpQS9mMUh0RGc1TnBvSVZtc2RFa1FvTlpoOW95ZVA3eGgvVDk4dXJkenJDN0dOQ3o4c1FodXpXOVZNWUhGU25DTytTWXo0eDYrTnZwZjdCUzhOcnlUWk1Keldtcml0VUZJVytwVjNvNWY4M0F3OU55c1BCMlAxZGZicS9hZDVzV1RwZTMwTnV2UDltRGhaUStET1M3RzB6MDZSNHRXY0R0VFErT0U5YlI1OHFQRUdnTTRiSmRmUklZb25oQlJrdWY2cGw4aU9PQ0VvS01QN2lRck84Z2IrVGNnSjVZSDdDL3J3enBDUVZjMGQxNWJuME9wbE1SOGwxMDcrMDR4ZVVWT3BUMGI3cHRmYnA3VmVaeHVXaHhSTTlHYlF5QmVkVlJHQ2toN3kyREtZY3BRdjJqM1h2L0NjNzRKaVBZM09DTFVEMEIvS0UwUFo1TnJvUEJFUmZ2a1B4WUFzV1ZmM1E3UUtTcTk4Z3p5UXlrWEpwTmFwcEt6cENDMkNKU09XdzVkenNPWjAiLCAic2lnbmF0dXJlIjoiTUlBR0NTcUdTSWIzRFFFSEFxQ0FNSUFDQVFFeER6QU5CZ2xnaGtnQlpRTUVBZ0VGQURDQUJna3Foa2lHOXcwQkJ3RUFBS0NBTUlJRDVqQ0NBNHVnQXdJQkFnSUlhR0QybWRuTXB3OHdDZ1lJS29aSXpqMEVBd0l3ZWpFdU1Dd0dBMVVFQXd3bFFYQndiR1VnUVhCd2JHbGpZWFJwYjI0Z1NXNTBaV2R5WVhScGIyNGdRMEVnTFNCSE16RW1NQ1FHQTFVRUN3d2RRWEJ3YkdVZ1EyVnlkR2xtYVdOaGRHbHZiaUJCZFhSb2IzSnBkSGt4RXpBUkJnTlZCQW9NQ2tGd2NHeGxJRWx1WXk0eEN6QUpCZ05WQkFZVEFsVlRNQjRYRFRFMk1EWXdNekU0TVRZME1Gb1hEVEl4TURZd01qRTRNVFkwTUZvd1lqRW9NQ1lHQTFVRUF3d2ZaV05qTFhOdGNDMWljbTlyWlhJdGMybG5ibDlWUXpRdFUwRk9SRUpQV0RFVU1CSUdBMVVFQ3d3TGFVOVRJRk41YzNSbGJYTXhFekFSQmdOVkJBb01Da0Z3Y0d4bElFbHVZeTR4Q3pBSkJnTlZCQVlUQWxWVE1Ga3dFd1lIS29aSXpqMENBUVlJS29aSXpqMERBUWNEUWdBRWdqRDlxOE9jOTE0Z0xGRFptMFVTNWpmaXFRSGRiTFBnc2MxTFVtZVkrTTlPdmVnYUphakNIa3d6M2M2T0twYkM5cStoa3dORnhPaDZSQ2JPbFJzU2xhT0NBaEV3Z2dJTk1FVUdDQ3NHQVFVRkJ3RUJCRGt3TnpBMUJnZ3JCZ0VGQlFjd0FZWXBhSFIwY0RvdkwyOWpjM0F1WVhCd2JHVXVZMjl0TDI5amMzQXdOQzFoY0hCc1pXRnBZMkV6TURJd0hRWURWUjBPQkJZRUZBSWtNQXVhN3UxR01aZWtwbG9wbmtKeGdoeEZNQXdHQTFVZEV3RUIvd1FDTUFBd0h3WURWUjBqQkJnd0ZvQVVJL0pKeEUrVDVPOG41c1QyS0d3L29ydjlMa3N3Z2dFZEJnTlZIU0FFZ2dFVU1JSUJFRENDQVF3R0NTcUdTSWIzWTJRRkFUQ0IvakNCd3dZSUt3WUJCUVVIQWdJd2diWU1nYk5TWld4cFlXNWpaU0J2YmlCMGFHbHpJR05sY25ScFptbGpZWFJsSUdKNUlHRnVlU0J3WVhKMGVTQmhjM04xYldWeklHRmpZMlZ3ZEdGdVkyVWdiMllnZEdobElIUm9aVzRnWVhCd2JHbGpZV0pzWlNCemRHRnVaR0Z5WkNCMFpYSnRjeUJoYm1RZ1kyOXVaR2wwYVc5dWN5QnZaaUIxYzJVc0lHTmxjblJwWm1sallYUmxJSEJ2YkdsamVTQmhibVFnWTJWeWRHbG1hV05oZEdsdmJpQndjbUZqZEdsalpTQnpkR0YwWlcxbGJuUnpMakEyQmdnckJnRUZCUWNDQVJZcWFIUjBjRG92TDNkM2R5NWhjSEJzWlM1amIyMHZZMlZ5ZEdsbWFXTmhkR1ZoZFhSb2IzSnBkSGt2TURRR0ExVWRId1F0TUNzd0thQW5vQ1dHSTJoMGRIQTZMeTlqY213dVlYQndiR1V1WTI5dEwyRndjR3hsWVdsallUTXVZM0pzTUE0R0ExVWREd0VCL3dRRUF3SUhnREFQQmdrcWhraUc5Mk5rQmgwRUFnVUFNQW9HQ0NxR1NNNDlCQU1DQTBrQU1FWUNJUURhSEdPdWkrWDJUNDRSNkdWcE43bTJuRWNyNlQ2c01qT2haNU51U28xZWd3SWhBTDFhKy9ocDg4REtKMHN2M2VUM0Z4V2NzNzF4bWJMS0QvUUozbVdhZ3JKTk1JSUM3akNDQW5XZ0F3SUJBZ0lJU1cwdnZ6cVkycGN3Q2dZSUtvWkl6ajBFQXdJd1p6RWJNQmtHQTFVRUF3d1NRWEJ3YkdVZ1VtOXZkQ0JEUVNBdElFY3pNU1l3SkFZRFZRUUxEQjFCY0hCc1pTQkRaWEowYVdacFkyRjBhVzl1SUVGMWRHaHZjbWwwZVRFVE1CRUdBMVVFQ2d3S1FYQndiR1VnU1c1akxqRUxNQWtHQTFVRUJoTUNWVk13SGhjTk1UUXdOVEEyTWpNME5qTXdXaGNOTWprd05UQTJNak0wTmpNd1dqQjZNUzR3TEFZRFZRUUREQ1ZCY0hCc1pTQkJjSEJzYVdOaGRHbHZiaUJKYm5SbFozSmhkR2x2YmlCRFFTQXRJRWN6TVNZd0pBWURWUVFMREIxQmNIQnNaU0JEWlhKMGFXWnBZMkYwYVc5dUlFRjFkR2h2Y21sMGVURVRNQkVHQTFVRUNnd0tRWEJ3YkdVZ1NXNWpMakVMTUFrR0ExVUVCaE1DVlZNd1dUQVRCZ2NxaGtqT1BRSUJCZ2dxaGtqT1BRTUJCd05DQUFUd0Z4R0VHZGRraGRVYVhpV0JCM2JvZ0tMdjNudXVUZUNOL0V1VDRUTlcxV1piTmE0aTBKZDJEU0pPZTdvSS9YWVh6b2pMZHJ0bWNMN0k2Q21FLzFSRm80SDNNSUgwTUVZR0NDc0dBUVVGQndFQkJEb3dPREEyQmdnckJnRUZCUWN3QVlZcWFIUjBjRG92TDI5amMzQXVZWEJ3YkdVdVkyOXRMMjlqYzNBd05DMWhjSEJzWlhKdmIzUmpZV2N6TUIwR0ExVWREZ1FXQkJRajhrbkVUNVBrN3lmbXhQWW9iRCtpdS8wdVN6QVBCZ05WSFJNQkFmOEVCVEFEQVFIL01COEdBMVVkSXdRWU1CYUFGTHV3M3FGWU00aWFwSXFaM3I2OTY2L2F5eVNyTURjR0ExVWRId1F3TUM0d0xLQXFvQ2lHSm1oMGRIQTZMeTlqY213dVlYQndiR1V1WTI5dEwyRndjR3hsY205dmRHTmhaek11WTNKc01BNEdBMVVkRHdFQi93UUVBd0lCQmpBUUJnb3Foa2lHOTJOa0JnSU9CQUlGQURBS0JnZ3Foa2pPUFFRREFnTm5BREJrQWpBNnozS0RVUmFac1liN05jTld5bUsvOUJmdDJROTFUYUtPdnZHY2dWNUN0NG40bVBlYldaK1kxVUVOajUzcHd2NENNREl0MVVRaHNLTUZkMnhkOHpnN2tHZjlGM3dzSVcyV1Q4WnlhWUlTYjFUNGVuMGJtY3ViQ1lraFlRYVpEd21TSFFBQU1ZSUJYekNDQVZzQ0FRRXdnWVl3ZWpFdU1Dd0dBMVVFQXd3bFFYQndiR1VnUVhCd2JHbGpZWFJwYjI0Z1NXNTBaV2R5WVhScGIyNGdRMEVnTFNCSE16RW1NQ1FHQTFVRUN3d2RRWEJ3YkdVZ1EyVnlkR2xtYVdOaGRHbHZiaUJCZFhSb2IzSnBkSGt4RXpBUkJnTlZCQW9NQ2tGd2NHeGxJRWx1WXk0eEN6QUpCZ05WQkFZVEFsVlRBZ2hvWVBhWjJjeW5EekFOQmdsZ2hrZ0JaUU1FQWdFRkFLQnBNQmdHQ1NxR1NJYjNEUUVKQXpFTEJna3Foa2lHOXcwQkJ3RXdIQVlKS29aSWh2Y05BUWtGTVE4WERURTJNVEV3TVRBNU5UY3dObG93THdZSktvWklodmNOQVFrRU1TSUVJQWpSdk9nWkxDa0w5ZmNCZjdOSm5RY3hsd2ltL09ieHkrcEltZ1M0TGRUYU1Bb0dDQ3FHU000OUJBTUNCRWN3UlFJZ1BKaHlkTXE5UDdTaHJFT2RxVk5KUk84QnN1MC93SXNCS0Y1cnlFR0JPSDRDSVFEeWo4Wml3VVV5alRJUFRUZDBKTTlaMExIdGZTQVhOWVN2T0t4eGN3MTlod0FBQUFBQUFBPT0iLCJoZWFkZXIiOnsiZXBoZW1lcmFsUHVibGljS2V5IjoiTUZrd0V3WUhLb1pJemowQ0FRWUlLb1pJemowREFRY0RRZ0FFNUdmb2t2U2Z3WnV3aXYwSGxKVE1MS0dlMS96dWtjejczSFlvVjh5cjNGNWdmZmthVmNQTmptNjFhdFNOZm9UZUxiSnQ1aHBLWkJuSWlwZlVXSXZxMmc9PSIsInB1YmxpY0tleUhhc2giOiJLMG9KcmJiYURVUDh6YitSUEZhTmxVUTdTU2I3T1FEWERVeU9vM0JXdDJzPSIsInRyYW5zYWN0aW9uSWQiOiIyYTNkZjhjNDg0Y2JmMDg1OTgyN2Y0ZDBkZjhkYjY4YjYyNjBlNTIxYWUwZmI4YjI1NDRmNzNiM2RlMDVlYjE5In19","language":"ru","additionalParameters":{},"preAuth":"true"}

	It is necessary to add to the request a header with the definition of the type of contents - Content-Type: application/json to ensure that the request is processed correctly.

The description of the parameters is given in the table below.
	Parameter
	Mandatory parameter
	Description

	merchant
	Yes
	Merchant login in the payment gateway system.

	orderNumber
	Yes
	Unique identifier of the order on the merchant side.

	description
	No
	Order description.

	language
	No
	Language in the ISO 639-1 encoding. If the language is not specified, the default language specified in the store settings is used.

	additionalParameters
	No
	Additional parameters of the order that are stored in the merchant personal area for the subsequent viewing. Additional parameters must be specified in the following format.
	"parameter_name": "parameter_value"

Each new pair of a parameter name and its value must be separated by a comma.

	clientId
	No
	Customer identifier for which a binding for recurring payments is to be created. Specify it only if the payment is dummy and is intended for subsequent recurring payments.

	preAuth
	No
	Parameter that defines the necessity of a pre-authorization (putting the amount on hold on the customer's account until its debiting). The following values are available:
· true - the parameter is enabled, a payment is processed with a pre-authorization (the amount on the customer's account is put on hold until the debiting);
· false - the parameter is disabled (the amount is debited immediately).
If the parameter is not specified in the request, the amount is debited immediately.

	paymentToken
	Yes
	The paymentToken parameter must contain a Base64 encoded value of the paymentData property that was received in PKPaymentToken Object from the Apple Pay system (see the documentation for Apple Pay). Thus, to send a payment request to the payment gateway, the merchant must:
1. Receive from the Apple Pay system the PKPaymentToken Object object containing the paymentData property;
2. Extract the value of the paymentData property and encode it in Base64;
3. Include the encoded value of the paymentData property as the value of the paymentToken parameter in the payment request that the merchant sends to the payment gateway.
Thus, the merchant receives from Apple PKPaymentToken Object that looks as follows:
	{"paymentData":{"data":"vj5Uvux7Im8DD8YhSOsJvw5lWmfl2HMUnTNWJhVfTehvFffRhDo54mfpjxMt9vJdp6DwD7fgcNHDxBvnj56qYG4DpOxg1fTSdXgPFrezprZHCrRxPhN\/aQQEThe2pQ0c7hgzzZlA6TpkIR\/Xtk6CTcEbD1W6znFVdvMgX8G96Gg4OAGl8GaTXdSU3wlMQL5E63CLQzPi1xHVErWl1OOn6hYQuREUDGc7mAjmqMyLwX+p6mOwJZ6ZFO\/b9HkgFi428rqtOH08AfqkfaIWwIIAz2w3xEoZrDXbgFpNBnN7F2oretCU1\/dFvQJjDYbMorKQ8+GJbWtlsVb+Ksy0U91eoUetDcyMpB9zc139STYVoC8yp6Yk6Mn3icCLY0ZBujq7\/404kMGpnHgkNVqFc\/4SN0U2XQ5rrb14DM8M69w=","signature":"MIAGCSqGSIb3DQEHAqCAMIACAQExDzANBglghkgBZQMEAgEFADCABgkqhkiG9w0BBwEAAKCAMIID4jCCA4igAwIBAgIIJEPyqAad9XcwCgYIKoZIzj0EAwIwejEuMCwGA1UEAwwlQXBwbGUgQXBwbGljYXRpb24gSW50ZWdyYXRpb24gQ0EgLSBHMzEmMCQGA1UECwwdQXBwbGUgQ2VydGlmaWNhdGlvbiBBdXRob3JpdHkxEzARBgNVBAoMCkFwcGxlIEluYy4xCzAJBgNVBAYTAlVTMB4XDTE0MDkyNTIyMDYxMVoXDTE5MDkyNDIyMDYxMVowXzElMCMGA1UEAwwcZWNjLXNtcC1icm9rZXItc2lnbl9VQzQtUFJPRDEUMBIGA1UECwwLaU9TIFN5c3RlbXMxEzARBgNVBAoMCkFwcGxlIEluYy4xCzAJBgNVBAYTAlVTMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEwhV37evWx7Ihj2jdcJChIY3HsL1vLCg9hGCV2Ur0pUEbg0IO2BHzQH6DMx8cVMP36zIg1rrV1O\/0komJPnwPE6OCAhEwggINMEUGCCsGAQUFBwEBBDkwNzA1BggrBgEFBQcwAYYpaHR0cDovL29jc3AuYXBwbGUuY29tL29jc3AwNC1hcHBsZWFpY2EzMDEwHQYDVR0OBBYEFJRX22\/VdIGGiYl2L35XhQfnm1gkMAwGA1UdEwEB\/wQCMAAwHwYDVR0jBBgwFoAUI\/JJxE+T5O8n5sT2KGw\/orv9LkswggEdBgNVHSAEggEUMIIBEDCCAQwGCSqGSIb3Y2QFATCB\/jCBwwYIKwYBBQUHAgIwgbYMgbNSZWxpYW5jZSBvbiB0aGlzIGNlcnRpZmljYXRlIGJ5IGFueSBwYXJ0eSBhc3N1bWVzIGFjY2VwdGFuY2Ugb2YgdGhlIHRoZW4gYXBwbGljYWJsZSBzdGFuZGFyZCB0ZXJtcyBhbmQgY29uZGl0aW9ucyBvZiB1c2UsIGNlcnRpZmljYXRlIHBvbGljeSBhbmQgY2VydGlmaWNhdGlvbiBwcmFjdGljZSBzdGF0ZW1lbnRzLjA2BggrBgEFBQcCARYqaHR0cDovL3d3dy5hcHBsZS5jb20vY2VydGlmaWNhdGVhdXRob3JpdHkvMDQGA1UdHwQtMCswKaAnoCWGI2h0dHA6Ly9jcmwuYXBwbGUuY29tL2FwcGxlYWljYTMuY3JsMA4GA1UdDwEB\/wQEAwIHgDAPBgkqhkiG92NkBh0EAgUAMAoGCCqGSM49BAMCA0gAMEUCIHKKnw+Soyq5mXQr1V62c0BXKpaHodYu9TWXEPUWPpbpAiEAkTecfW6+W5l0r0ADfzTCPq2YtbS39w01XIayqBNy8bEwggLuMIICdaADAgECAghJbS+\/OpjalzAKBggqhkjOPQQDAjBnMRswGQYDVQQDDBJBcHBsZSBSb290IENBIC0gRzMxJjAkBgNVBAsMHUFwcGxlIENlcnRpZmljYXRpb24gQXV0aG9yaXR5MRMwEQYDVQQKDApBcHBsZSBJbmMuMQswCQYDVQQGEwJVUzAeFw0xNDA1MDYyMzQ2MzBaFw0yOTA1MDYyMzQ2MzBaMHoxLjAsBgNVBAMMJUFwcGxlIEFwcGxpY2F0aW9uIEludGVncmF0aW9uIENBIC0gRzMxJjAkBgNVBAsMHUFwcGxlIENlcnRpZmljYXRpb24gQXV0aG9yaXR5MRMwEQYDVQQKDApBcHBsZSBJbmMuMQswCQYDVQQGEwJVUzBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABPAXEYQZ12SF1RpeJYEHduiAou\/ee65N4I38S5PhM1bVZls1riLQl3YNIk57ugj9dhfOiMt2u2ZwvsjoKYT\/VEWjgfcwgfQwRgYIKwYBBQUHAQEEOjA4MDYGCCsGAQUFBzABhipodHRwOi8vb2NzcC5hcHBsZS5jb20vb2NzcDA0LWFwcGxlcm9vdGNhZzMwHQYDVR0OBBYEFCPyScRPk+TvJ+bE9ihsP6K7\/S5LMA8GA1UdEwEB\/wQFMAMBAf8wHwYDVR0jBBgwFoAUu7DeoVgziJqkipnevr3rr9rLJKswNwYDVR0fBDAwLjAsoCqgKIYmaHR0cDovL2NybC5hcHBsZS5jb20vYXBwbGVyb290Y2FnMy5jcmwwDgYDVR0PAQH\/BAQDAgEGMBAGCiqGSIb3Y2QGAg4EAgUAMAoGCCqGSM49BAMCA2cAMGQCMDrPcoNRFpmxhvs1w1bKYr\/0F+3ZD3VNoo6+8ZyBXkK3ifiY95tZn5jVQQ2PnenC\/gIwMi3VRCGwowV3bF3zODuQZ\/0XfCwhbZZPxnJpghJvVPh6fRuZy5sJiSFhBpkPCZIdAAAxggGMMIIBiAIBATCBhjB6MS4wLAYDVQQDDCVBcHBsZSBBcHBsaWNhdGlvbiBJbnRlZ3JhdGlvbiBDQSAtIEczMSYwJAYDVQQLDB1BcHBsZSBDZXJ0aWZpY2F0aW9uIEF1dGhvcml0eTETMBEGA1UECgwKQXBwbGUgSW5jLjELMAkGA1UEBhMCVVMCCCRD8qgGnfV3MA0GCWCGSAFlAwQCAQUAoIGVMBgGCSqGSIb3DQEJAzELBgkqhkiG9w0BBwEwHAYJKoZIhvcNAQkFMQ8XDTE3MDMxNzEwMzgzOVowKgYJKoZIhvcNAQk0MR0wGzANBglghkgBZQMEAgEFAKEKBggqhkjOPQQDAjAvBgkqhkiG9w0BCQQxIgQgvL+q07\/reM0N\/5b0hwWT7TJReVTdS9QX5SPhiqeie+cwCgYIKoZIzj0EAwIERzBFAiEAttC68Xyzs6I0+tAKmg6x+0UrqmkQN\/V5c8RMMIEJHooCIHIgUHbAt2p5WrFHQKrAVL4c7nohRplZWVbVu6wbBeCgAAAAAAAA","header":{"publicKeyHash":"fpvAnSDwQFX4NX4pghdjpNwUFhoTH\/DDGhew94uJaRA=","ephemeralPublicKey":"MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAErKZUfqvhlieGAOaCKeTB\/oDEo29fS1jWSKemNDh3fIqmbfs86nL4BGtRsWRxWcMnHN6GFOQm1MEj4m7ZHxe78g==","transactionId":"38e4c267ef1de62a343d0eccada3f7e19f6b22ffc7ede899c039865432ba6aa2"},"version":"EC_v1"},"transactionIdentifier":"38E4C267EF1DE62A343D0ECCADA3F7E19F6B22FFC7EDE899C039865432BA6AA2","paymentMethod":{"network":"Visa","type":"debit","displayName":"Visa 5223"}}

The value of the paymentData property (from the example above) that is to be encoded in Base64 and to be passed in the payment request to the payment gateway looks as follows:
	{"data":"vj5Uvux7Im8DD8YhSOsJvw5lWmfl2HMUnTNWJhVfTehvFffRhDo54mfpjxMt9vJdp6DwD7fgcNHDxBvnj56qYG4DpOxg1fTSdXgPFrezprZHCrRxPhN\/aQQEThe2pQ0c7hgzzZlA6TpkIR\/Xtk6CTcEbD1W6znFVdvMgX8G96Gg4OAGl8GaTXdSU3wlMQL5E63CLQzPi1xHVErWl1OOn6hYQuREUDGc7mAjmqMyLwX+p6mOwJZ6ZFO\/b9HkgFi428rqtOH08AfqkfaIWwIIAz2w3xEoZrDXbgFpNBnN7F2oretCU1\/dFvQJjDYbMorKQ8+GJbWtlsVb+Ksy0U91eoUetDcyMpB9zc139STYVoC8yp6Yk6Mn3icCLY0ZBujq7\/404kMGpnHgkNVqFc\/4SN0U2XQ5rrb14DM8M69w=","signature":"MIAGCSqGSIb3DQEHAqCAMIACAQExDzANBglghkgBZQMEAgEFADCABgkqhkiG9w0BBwEAAKCAMIID4jCCA4igAwIBAgIIJEPyqAad9XcwCgYIKoZIzj0EAwIwejEuMCwGA1UEAwwlQXBwbGUgQXBwbGljYXRpb24gSW50ZWdyYXRpb24gQ0EgLSBHMzEmMCQGA1UECwwdQXBwbGUgQ2VydGlmaWNhdGlvbiBBdXRob3JpdHkxEzARBgNVBAoMCkFwcGxlIEluYy4xCzAJBgNVBAYTAlVTMB4XDTE0MDkyNTIyMDYxMVoXDTE5MDkyNDIyMDYxMVowXzElMCMGA1UEAwwcZWNjLXNtcC1icm9rZXItc2lnbl9VQzQtUFJPRDEUMBIGA1UECwwLaU9TIFN5c3RlbXMxEzARBgNVBAoMCkFwcGxlIEluYy4xCzAJBgNVBAYTAlVTMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEwhV37evWx7Ihj2jdcJChIY3HsL1vLCg9hGCV2Ur0pUEbg0IO2BHzQH6DMx8cVMP36zIg1rrV1O\/0komJPnwPE6OCAhEwggINMEUGCCsGAQUFBwEBBDkwNzA1BggrBgEFBQcwAYYpaHR0cDovL29jc3AuYXBwbGUuY29tL29jc3AwNC1hcHBsZWFpY2EzMDEwHQYDVR0OBBYEFJRX22\/VdIGGiYl2L35XhQfnm1gkMAwGA1UdEwEB\/wQCMAAwHwYDVR0jBBgwFoAUI\/JJxE+T5O8n5sT2KGw\/orv9LkswggEdBgNVHSAEggEUMIIBEDCCAQwGCSqGSIb3Y2QFATCB\/jCBwwYIKwYBBQUHAgIwgbYMgbNSZWxpYW5jZSBvbiB0aGlzIGNlcnRpZmljYXRlIGJ5IGFueSBwYXJ0eSBhc3N1bWVzIGFjY2VwdGFuY2Ugb2YgdGhlIHRoZW4gYXBwbGljYWJsZSBzdGFuZGFyZCB0ZXJtcyBhbmQgY29uZGl0aW9ucyBvZiB1c2UsIGNlcnRpZmljYXRlIHBvbGljeSBhbmQgY2VydGlmaWNhdGlvbiBwcmFjdGljZSBzdGF0ZW1lbnRzLjA2BggrBgEFBQcCARYqaHR0cDovL3d3dy5hcHBsZS5jb20vY2VydGlmaWNhdGVhdXRob3JpdHkvMDQGA1UdHwQtMCswKaAnoCWGI2h0dHA6Ly9jcmwuYXBwbGUuY29tL2FwcGxlYWljYTMuY3JsMA4GA1UdDwEB\/wQEAwIHgDAPBgkqhkiG92NkBh0EAgUAMAoGCCqGSM49BAMCA0gAMEUCIHKKnw+Soyq5mXQr1V62c0BXKpaHodYu9TWXEPUWPpbpAiEAkTecfW6+W5l0r0ADfzTCPq2YtbS39w01XIayqBNy8bEwggLuMIICdaADAgECAghJbS+\/OpjalzAKBggqhkjOPQQDAjBnMRswGQYDVQQDDBJBcHBsZSBSb290IENBIC0gRzMxJjAkBgNVBAsMHUFwcGxlIENlcnRpZmljYXRpb24gQXV0aG9yaXR5MRMwEQYDVQQKDApBcHBsZSBJbmMuMQswCQYDVQQGEwJVUzAeFw0xNDA1MDYyMzQ2MzBaFw0yOTA1MDYyMzQ2MzBaMHoxLjAsBgNVBAMMJUFwcGxlIEFwcGxpY2F0aW9uIEludGVncmF0aW9uIENBIC0gRzMxJjAkBgNVBAsMHUFwcGxlIENlcnRpZmljYXRpb24gQXV0aG9yaXR5MRMwEQYDVQQKDApBcHBsZSBJbmMuMQswCQYDVQQGEwJVUzBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABPAXEYQZ12SF1RpeJYEHduiAou\/ee65N4I38S5PhM1bVZls1riLQl3YNIk57ugj9dhfOiMt2u2ZwvsjoKYT\/VEWjgfcwgfQwRgYIKwYBBQUHAQEEOjA4MDYGCCsGAQUFBzABhipodHRwOi8vb2NzcC5hcHBsZS5jb20vb2NzcDA0LWFwcGxlcm9vdGNhZzMwHQYDVR0OBBYEFCPyScRPk+TvJ+bE9ihsP6K7\/S5LMA8GA1UdEwEB\/wQFMAMBAf8wHwYDVR0jBBgwFoAUu7DeoVgziJqkipnevr3rr9rLJKswNwYDVR0fBDAwLjAsoCqgKIYmaHR0cDovL2NybC5hcHBsZS5jb20vYXBwbGVyb290Y2FnMy5jcmwwDgYDVR0PAQH\/BAQDAgEGMBAGCiqGSIb3Y2QGAg4EAgUAMAoGCCqGSM49BAMCA2cAMGQCMDrPcoNRFpmxhvs1w1bKYr\/0F+3ZD3VNoo6+8ZyBXkK3ifiY95tZn5jVQQ2PnenC\/gIwMi3VRCGwowV3bF3zODuQZ\/0XfCwhbZZPxnJpghJvVPh6fRuZy5sJiSFhBpkPCZIdAAAxggGMMIIBiAIBATCBhjB6MS4wLAYDVQQDDCVBcHBsZSBBcHBsaWNhdGlvbiBJbnRlZ3JhdGlvbiBDQSAtIEczMSYwJAYDVQQLDB1BcHBsZSBDZXJ0aWZpY2F0aW9uIEF1dGhvcml0eTETMBEGA1UECgwKQXBwbGUgSW5jLjELMAkGA1UEBhMCVVMCCCRD8qgGnfV3MA0GCWCGSAFlAwQCAQUAoIGVMBgGCSqGSIb3DQEJAzELBgkqhkiG9w0BBwEwHAYJKoZIhvcNAQkFMQ8XDTE3MDMxNzEwMzgzOVowKgYJKoZIhvcNAQk0MR0wGzANBglghkgBZQMEAgEFAKEKBggqhkjOPQQDAjAvBgkqhkiG9w0BCQQxIgQgvL+q07\/reM0N\/5b0hwWT7TJReVTdS9QX5SPhiqeie+cwCgYIKoZIzj0EAwIERzBFAiEAttC68Xyzs6I0+tAKmg6x+0UrqmkQN\/V5c8RMMIEJHooCIHIgUHbAt2p5WrFHQKrAVL4c7nohRplZWVbVu6wbBeCgAAAAAAAA","header":{"publicKeyHash":"fpvAnSDwQFX4NX4pghdjpNwUFhoTH\/DDGhew94uJaRA=","ephemeralPublicKey":"MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAErKZUfqvhlieGAOaCKeTB\/oDEo29fS1jWSKemNDh3fIqmbfs86nL4BGtRsWRxWcMnHN6GFOQm1MEj4m7ZHxe78g==","transactionId":"38e4c267ef1de62a343d0eccada3f7e19f6b22ffc7ede899c039865432ba6aa2"},"version":"EC_v1"}

The examples and the response description
A successful payment
	{
"success":true,
"data": {
 "orderId": "12312312123"
 }
}

A failed payment
	{
 "error": {
 "code": 1,
 "description": "Processing Error",
 "message": "The funds on the card are not sufficient"
 },
 "success": false
}

The description of the response parameters is given in the table below.
	Parameter
	Nested parameter
	Mandatory parameter
	Description

	success
	Not relevant
	Yes
	Designates a successful payment. The following values are available:
· true - the payment is processed successfully;
· false - the payment failed.

	data
(this parameter is returned only if the payment is processed successfully)
	orderId
	Yes
	Order number in the payment system unique for the merchant.

	error
(this parameter is returned only if the payment failed)
	code
	Yes
	Error code.

	
	description
	Yes
	A detailed technical explanation of the error - the contents of this parameter is not to be displayed to the customer.

	
	message
	Yes
	Comprehensive error description - it is intended for displaying to the user.

[bookmark: _Toc256000122][bookmark: scroll-bookmark-157]Request for executing recurring payments through Apple Pay
[bookmark: scroll-bookmark-225]A request for processing a recurring payment through Apple Pay
The recurrentPayment.do request is used to register an order (see Connection URLs).
An example of the POST request is given below

	{
 "userName": "userName",
 "password": "password",
 "orderNumber": "UAF-203974-DE-12",
 "language": "RU",
 "bindingId": "binding_id",
 "amount": 12300,
 "currency": "810",
 "description" : "Test description",
 "additionalParameters": {
 "firstParamName": "firstParamValue",
 "secondParamName": "secondParamValue"
 }
 }

The description of the parameters is presented in the table below.
	Parameter
	Mandatory
	Description

	userName
	Yes
	Name of the user who has the access to the payment gateway API.

	password
	Yes
	Password of the user who has the access to the payment gateway API.

	orderNumber
	Yes
	Order number.

	language
	No
	Two-letter language code.

	bindingId
	Yes
	Binding identifier.

	amount
	Yes
	Order amount in the minor denomination of the currency (for example, in kopeks).

	currency
	No
	Numberic ISO 4217 code of the currency.

	description
	No
	Order description.

	additionalParameters
	No
	
"parameter 1 name": "parameter 1 value",
"parameter 2 name": "parameter 2 value"

The examples and description of the response
Below an example of a successful payment is given.

	{"success":true,"data":{"orderId":"f7beebe4-7c9a-43cf-8e26-67ab741f9b9e"},"orderStatus":{"errorCode":"0","orderNumber":"UAF-203974-DE-12","orderStatus":2,"actionCode":0,"actionCodeDescription":"","amount":12300,"currency":"810","date":1491333938243,"orderDescription":"Test description","merchantOrderParams":[{"name":"firstParamName","value":"firstParamValue"},{"name":"secondParamName","value":"secondParamValue"}],"attributes":[],"cardAuthInfo":{"expiration":"201912","cardholderName":"sdf sdf","approvalCode":"123456","paymentSystem":"VISA","pan":"411111**1111"},"authDateTime":1491333939454,"terminalId":"11111","authRefNum":"111111111111","paymentAmountInfo":{"paymentState":"DEPOSITED","approvedAmount":12300,"depositedAmount":12300,"refundedAmount":0},"bankInfo":{"bankCountryName":"<Unknown>"},"chargeback":false,"operations":[{"amount":12300,"cardHolder":"sdf sdf","authCode":"123456"}]}}

Below an example of a failed payment is given.
	{
 "error": {
 "code": "10",
 "description": "An order with this number is already registered.",
 "message": "An order with this number is already registered."
 },
 "success": false
}

The description of the response parameters is given in the table below.
	Parameter
	Nested parameter
	Mandatory parameter
	Description

	success
	Not relevant
	Yes
	Designates a successful payment. The following values are available:
· true - the payment is processed successfully;
· false - the payment failed.

	data
(this parameter is returned only if the payment is processed successfully)
	orderId
	Yes
	Order number in the payment system unique for the merchant.

	error
(this parameter is returned only if the payment failed)
	code
	Yes
	Error code.

	
	description
	Yes
	A detailed technical explanation of the error - the contents of this parameter is not to be displayed to the customer.

	
	message
	Yes
	Comprehensive error description - it is intended for displaying to the user.

Error codes
	Error code
	Message

	0
	Processing executed without system errors.

	1
	Incorrect payment details.

	1
	Impossible to use the binding for recurring payments.

	1
	Incorrect payment parameters.

	1
	Wrong order number.

	4
	Incorrect binding identifier.

	5
	Using binding is disabled.

	5
	Incorrect amount.

	5
	Incorrect login.

	5
	Incorrect password.

	5
	Authentication error.

	5
	Authentication error.

	10
	An order with this number has already been registered.

[bookmark: _Toc256000123][bookmark: scroll-bookmark-158]Request for a payment through Android Pay
[bookmark: scroll-bookmark-230]Request to the payment gateway for a payment using Android Pay
The payment.do request is used to register an order (see Connection URLs).
	Use the standard requests to the payment gateway for the operations of cancellation, refund and payment completion.

Below an example of a payment request is given.
	It is necessary to add to the request a header with the definition of the type of contents - Content-Type: application/json to ensure that the request is processed correctly.

	{
 "merchant": "OurBestMerchantLogin",
 "orderNumber": "UAF-203974-DE",
 "language": "RU",
 "preAuth": true,
 "description" : "Test description",
 "additionalParameters":
 {
 "firstParamName": "firstParamValue",
 "secondParamName": "secondParamValue"
 },
 "paymentToken": "\x7B\x0A\x20\x20\xE2\x80\x9C\x65\x6E\x63\x72\x79\x70\x74\x65\x64\x4D\x65\x73\x73\x61\x67\x65\xE2\x80\x9D\x3A\x20\xE2\x80\x9C\x5A\x57\x35\x6A\x63\x6E\x6C\x77\x64\x47\x56\x6B\x54\x57\x56\x7A\x63\x32\x46\x6E\x5A\x51\x3D\x3D\xE2\x80\x9D\x2C\x0A\x20\x20\xE2\x80\x9C\x65\x70\x68\x65\x6D\x65\x72\x61\x6C\x50\x75\x62\x6C\x69\x63\x4B\x65\x79\xE2\x80\x9D\x3A\x20\xE2\x80\x9C\x5A\x58\x42\x6F\x5A\x57\x31\x6C\x63\x6D\x46\x73\x55\x48\x56\x69\x62\x47\x6C\x6A\x53\x32\x56\x35\xE2\x80\x9D\x2C\x0A\x20\x20\x22\x74\x61\x67\x22\x3A\x20\xE2\x80\x9D\x63\x32\x6C\x6E\x62\x6D\x46\x30\x64\x58\x4A\x6C\xE2\x80\x9D\x0A\x7D",
 "ip" : "127.0.0.1",
 "amount" : "230000",
 "currencyCode" : 810
}

The description of the parameters is presented in the table below.
	Parameter
	Mandatory
	Description

	merchant
	Yes
	Merchant login in the payment gateway system.

	orderNumber
	Yes
	Unique identifier of the order on the merchant side.

	description
	No
	Order description.

	language
	No
	Language in the ISO 639-1 encoding. If the language is not specified, the default language specified in the store settings is used.

	additionalParameters
	No
	Additional parameters of the order that are stored in the merchant personal area for the subsequent viewing. Additional parameters must be specified in the following format.

	"parameter_name": "parameter_value"

Each new pair of a parameter name and its value must be separated by a comma.

	preAuth
	No
	Parameter that defines the necessity of a pre-authorization (putting the amount on hold on the customer's account until its debiting). The following values are available:
· true - the parameter is enabled, a payment is processed with a pre-authorization (the amount on the customer's account is put on hold until the debiting);
· false - the parameter is disabled (the amount is debited immediately).
If the parameter is not specified in the request, the amount is debited immediately.

	clientId
	No
	Customer identifier for which a binding for recurring payments is to be created. Specify it only if the payment is dummy and is intended for subsequent recurring payments.

	paymentToken
	Yes
	JSON-object that contains a token received from Android Pay. This parameter must be in the UTF-8 encoding.

	ip
	Yes
	IP-address of the payer.

	amount
	Yes
	Payment amount in the minimum denomination of the currency (for example, in kopeks).

	currencyCode
	No
	Numeric ISO 4217 code of the payment currency. If this parameter is not specified, it is considered to be equal to the default currency code.

The examples and the response description
A successful payment

	{
"success":true,
"data": {
 "orderId": "12312312123"
 }

A failed payment

	{
 "error": {
 "code": 1,
 "description":
"Processing Error",
 "message":
"The funds on the card are not sufficient"
 },
 "success": false
}

The description of the response parameters is given in the table below.
	Parameter
	Nested parameter
	Mandatory parameter
	Description

	success
	Not relevant
	Yes
	Designates a successful payment. The following values are available:
· true - the payment is processed successfully;
· false - the payment failed.

	data
(this parameter is returned only if the payment is processed successfully)
	orderId
	Yes
	Order number in the payment system unique for the merchant.

	error
(this parameter is returned only if the payment failed)
	code
	Yes
	Error code.

	
	description
	Yes
	A detailed technical explanation of the error - the contents of this parameter is not to be displayed to the customer.

	
	message
	Yes
	Comprehensive error description - it is intended for displaying to the user.

The description of the possible error codes is given in the table below.
	Error code
	Error message

	0
	The request has been processed without system errors.

	1
	The funds on the card are not sufficient

	5
	Access denied

	
	The user must change the password

	7
	System error

	10
	Incorrect value of the [paymentToken] parameter

	
	Incorrect value of the [orderNumber] parameter

	
	Incorrect value of the [merchant] parameter

	
	Incorrect value of the [ip] parameter

	
	Encryption of the data passed in unsuccessful

[bookmark: _Toc256000124][bookmark: scroll-bookmark-159]Request for a payment through Samsung Pay
[bookmark: scroll-bookmark-232]The payment.do request is used to register an order in Samsung Pay.
	Use the standard requests to the payment gateway for the operations of cancellation, refund and payment completion.

Below an example of a request for a payment through Samsung Pay is given.
	It is necessary to add to the request a header with the definition of the type of contents - Content-Type: application/json to ensure that the request is processed correctly.

	{
 "merchant": "OurBestMerchantLogin",
 "orderNumber": "UAF-203974-DE",
 "language": "RU",
 "preAuth": true,
 "description" : "Test description",
 "additionalParameters":
 {
 "firstParamName": "firstParamValue",
 "secondParamName": "secondParamValue"
 },
 "paymentToken": "ew0KICB7DQoJICAidmVyc2lvbiI6ICJSU0FfdjEiLA0KCSAgInNpZ25hdHVyZSI6ICJabUZyWlNCemFXZHVZWFIxY21VPSIsDQoJICAiaGVhZGVyIjogew0KCQkiZXBoZW1lcmFsUHVibGljS2V5IjogIk1Ga3dFd1lIS29aSXpqMENBUVlJS29aSXpqMERBUWNEUWdBRW14Q2hDcGpLemY5YVh6MjZXVDZaVE4yekUzaUdYUWpjWlJZWUFkUUlURFgyUmtBTmJ0N2s5cmFoRjFoempqbWVWVHhjZ0NvZkg4MXprMkdOVFozZHRnPT0iICAgICAgIA0KCQkid3JhcHBlZEtleSI6ICJYejI2V1Q2WlROMnpFM2lHWFFqYz0iDQoJCSJwdWJsaWNLZXlIYXNoIjogIk9yV2dqUkdrcUVXamRrUmRVclhmaUxHRDBoZS96cEV1NTEyRkpXckdZRm89IiwNCgkJInRyYW5zYWN0aW9uSWQiOiAiYXBwbGUtMTIzNDU2Nzg5MEFCQ0RFRiINCgkgIH0sDQoJICAiZGF0YSI6ICIxZFhFMTNrdnpUVlA2bldFTjhEMnBoclBsZlFjR3I4VzN5ajJTSFlZai9QeWNIV1RqbnBWN3ovRXI3OGJyaT09Ig0KICB9DQp9",
 "ip" : "127.0.0.1"
}

The description of the parameters is given in the table below.
	Name
	Mandatory
	Description

	merchant
	Yes
	Merchant login in the payment gateway system.

	orderNumber
	Yes
	Unique identifier of the order on the merchant side.

	description
	No
	Order description.

	language
	No
	Language in the ISO 639-1 encoding. If the language is not specified, the default language specified in the store settings is used.

	additionalParameters
	No
	Additional parameters of the order that are stored in the merchant personal area for the subsequent viewing. Additional parameters must be specified in the following format.

	"parameter_name": "parameter_value"

Each new pair of a parameter name and its value must be separated by a comma.

	preAuth
	No
	Parameter that defines the necessity of a pre-authorization (putting the amount on hold on the customer's account until its debiting). The following values are available:
· true - the parameter is enabled, a payment is processed with a pre-authorization (the amount on the customer's account is put on hold until the debiting);
· false - the parameter is disabled (the amount is debited immediately).
If the parameter is not specified in the request, the amount is debited immediately.

	clientId
	No
	Customer identifier for which a binding for recurring payments is to be created. Specify it only if the payment is dummy and is intended for subsequent recurring payments.

	paymentToken
	Yes
	The contents of the 3ds.data parameter from the response received from Samsung Pay.

	ip
	Yes
	IP-address of the payer.

	currencyCode
	No
	Numeric ISO 4217 code of the payment currency. If this parameter is not specified, it is considered to be equal to the default currency code.

The examples and the response description
A successful payment
	{
"success":true,
"data": {
 "orderId": "12312312123"
 }
}

A failed payment

	{
 "error": {
 "code": 1,
 "description": "Processing Error",
 "message": "The funds on the card are not sufficient"
 },
 "success": false
}

The description of the response parameters is presented in the table below.
	Parameter
	Nested parameter
	Mandatory
	Description

	success
	Not relevant
	Yes
	Designates a successful payment. The following values are available:
· true - the payment is processed successfully;
· false - the payment failed.

	data
(this parameter is returned only if the payment is processed successfully)
	orderId
	Yes
	Order number in the payment system unique for the merchant.

	error
(this parameter is returned only if the payment failed)
	code
	Yes
	Error code.

	
	description
	Yes
	A detailed technical explanation of the error - the contents of this parameter is not to be displayed to the customer.

	
	message
	Yes
	Comprehensive error description - it is intended for displaying to the user.

The description of the possible error codes is given in the table below.
	Code
	Description

	0
	The request has been processed without system errors.

	1
	The funds on the card are not sufficient

	5
	Access denied

	
	The user must change the password

	7
	System error

	10
	Incorrect value of the [paymentToken] parameter

	
	Incorrect value of the [orderNumber] parameter

	
	Incorrect value of the [merchant] parameter

	
	Incorrect value of the [ip] parameter

	
	Incorrect value of the [paymentToken.header.alg] parameter

	
	Incorrect value of the [paymentToken.header.enc] parameter

	
	Incorrect value of the [paymentToken.header.typ] parameter

	
	Incorrect value of the [paymentToken.header.channelSecurityContext] parameter

	
	Incorrect value of the [paymentToken.header.kid] parameter

	
	Encryption of the data passed in unsuccessful

[bookmark: scroll-bookmark-171][bookmark: _Toc256000125][bookmark: scroll-bookmark-160]Test cards
Specify at least two words in Latin alphabet letters as Cardholder name.
For all cards enrolled to 3-D Secure (veres=y, pares=y или a) the ACS password is: 12345678.
	The test environment is not designed for the load-testing: if necessary to conduct such a testing, contact the Bank.

Test cards:
	pan: 4111 1111 1111 1111
exp date: 2019/12
cvv2: 123
3dsecure: veres=y, pares=y

	pan: 5100 0000 0000 0008
exp date: 2017/12
cvv2: 123
3dsecure: veres=y, pares=y

	pan: 6011 0000 0000 0004
exp date: 2019/12
cvv2: 123
3dsecure: veres=y, pares=y

	pan: 6390 0200 0000 000003
exp date: 2019/12
cvv2: 123(optional parameter)
3dsecure: veres=y, pares=a

	pan: 5555 5555 5555 5599
exp date: 2019/12
cvv2: 123
3dsecure: veres=n

	pan: 4444 0000 0000 1111
exp date: 2019/12
cvv2: 123
3dsecure: veres=n

	pan: 2200 0000 0000 0004
exp date: 2019/12
cvc: 123
3dsecure: veres=n

	pan: 2200 0000 0000 0012
exp date: 2019/12
cvc: 123
3dsecure: veres=y pares=n

	pan: 2200 0000 0000 0020
exp date: 2019/12
cvc: 123
3dsecure: veres=u

	pan: 2200 0000 0000 0038
exp date: 2019/12
cvc: 123
3dsecure: veres=y pares=u

	pan: 2200 0000 0000 0046
exp date: 2019/12
cvc: 123
3dsecure: veres=y pares=a

	pan: 2200 0000 0000 0053
exp date: 2019/12
cvc: 123
3dsecure: veres=y pares=y

	pan: 2200 0000 0000 0053
exp date: 2019/12
cvv2: 123
3dsecure: VeRes=Y, PaRes=Y

	pan: 2200 0000 0000 0046
exp date: 2019/12
cvv2: 123
3dsecure: VeRes=Y, PaRes=A

	pan: 2200 0000 0000 0012
exp date: 2019/12
cvv2: 123
3dsecure: VeRes=Y, PaRes=N

	pan: 2200 0000 0000 0038
exp date: 2019/12
cvv2: 123
3dsecure: VeRes=Y, PaRes=U

	pan: 2200 0000 0000 0020
exp date: 2019/12
cvv2: 123
3dsecure: VeRes=U

	pan: 2200 0000 0000 0004
exp date: 2019/12
cvv2: 123
3dsecure: VeRes=N

Cards that return errors /
Cards returning errors:
	pan: 5555 5555 5555 5557
exp date: 2019/12
cvv2: 123
3dsecure: veres=y, pares=u

	pan: 4444 3333 2222 1111
exp date: 2019/12
cvv2: 123
3dsecure: veres=y, pares=u

Declined. PaRes status is U (-2011)

	pan: 4000 0000 0000 0002
exp date: 2019/12
cvv2: 123
3dsecure: veres=u

	pan: 5555 5555 4444 4442
exp date: 2019/12
cvv2: 123
3dsecure: veres=u

Declined. VeRes status is U (-2016)

	pan: 4444 4444 4444 4422
exp date: 2019/12
cvv2: 123

Invalid message format (913)

	pan: 4444 4444 4444 4455
exp date: 2019/12
cvv2: 123

Card limitations exceeded (902)

	pan: 4444 4444 4444 3333
exp date: 2019/12
cvv2: 123

Limit exceeded (123)

	pan: 4444 4444 4444 6666
exp date: 2019/12
cvv2: 123

BLOCKED_BY_LIMIT (-20010)

	pan: 4444 4444 1111 1111
exp date: 2019/12
cvv2: 123

Transaction rejected by the network (5)

	pan: 4444 4444 9999 9999
exp date: 2019/12
cvv2: 123

TDSEC_COMM_ERROR (151017)

	pan: 5432 5432 5432 5430
exp date: 2018/08
cvv2: 521

INSUFFICIENT_FUNDS (116)

[bookmark: _Toc256000126][bookmark: scroll-bookmark-161]Appendix 1. External fee for payments
The possibility for a merchant to use this functionality must be agreed with the Bank.
[bookmark: _Toc256000127][bookmark: scroll-bookmark-162]Supplement to the description of the payment page
1. It is necessary to enable the check for the presense of a fee in the payment script settings (in the page header):
	getFeeEnabled: true

2. The payment script executes a request to the payment gateway to define whether a fee is to be charged. In case of a confirming response (true), the fee amount is displayed on the payment page.
To enable displaying the fee, the payment page body must contain the following block:
	<div id="feeBlock" class="row" style="display: none;">
<div class="price">

<div id="feeAmount" style="float: left; margin-right: 8px;">0.00</div>

</div>
<div class="name">Payment fee</div>
</div>

[bookmark: _Toc256000128][bookmark: scroll-bookmark-163]Testing
1. Register an order in the payment gateway. The registration can be done with REST/SOAP.
2. Go to the payment page. If working with fees is supported for the merchant, the payment page will contain:
· Fee amount;
· "I am aware of the terms of the offer and accept them" flag. To familiarize yourself with the offer, click the corresponding link. You will be redirected to the corresponding page specified in the merchant settings.
[image:]

3. To process a payment, enter the card data and tick the"I am aware of the terms of the offer and accept them" flag. Click Payment.
The fee amount will be passed in the additional parameter of the payment request, payment_fee. In the console, the fee amount is displayed in the payment currency:
· On the Orders page, the fee amount is displayed in the Additional Parameters column;
· On the Order Details page, the fee amount is displayed in the Additional Parameters section.

[bookmark: _Toc256000129][bookmark: scroll-bookmark-164]Appendix 2. Specification of additional fields for air-commerce payments and hotels booking
To improve fraud prevention in e-commerce services, it is necessary to pass additional information when registering payments in the payment gateway. It is necessary to provide the details on passengers and flight parameters when purchasing airline tickets and on guests when booking hotels.

[bookmark: _Toc256000130][bookmark: scroll-bookmark-165]Additional information passed in air-commerce
The table containing the names of additional fields and their descriptions is given below.
	№№
	 Mandatory
	Field name
	Field description

	1
	Yes
	TICKET
	Ticket number/booking number

	2
	No
	LANGUAGE
	Language and the home country of the person booking a ticket

	3
	Yes
	USER_FIRST_NAME
	Name of the customer who books a ticket

	4
	Yes
	USER_LAST_NAME
	Surname of the customer who books a ticket

	5
	No
	USER_MOBILE_PHONE
	Mobile phone number of the customer who books a ticket

	6
	No
	USER_HOME_PHONE
	Landline phone number of the customer who books a ticket

	7
	Yes
	USER_EMAIL
	Email address of the customer who books a ticket

	8
	Yes
	S{N}-BDATE
	Departure date and time for segment N

	9
	Yes
	S{N}-EDATE
	Arrival date and time for segment N

	10
	Yes
	S{N}-BLOCATIONCOUN
	Departure country name for segment N specified in the Russian or English language

	11
	Yes
	S{N}-ELOCATIONCOUN
	Arrival country name for segment N specified in the Russian or English language

	12
	Yes
	S{N}-BLOCATIONCODE
	Departure airport code for segment N specified in the Russian or English language

	13
	Yes
	S{N}-ELOCATIONCODE
	Arrival airport code for segment N specified in the Russian or English language

	14
	Yes
	S{N}-BLOCATIONCITY
	Departure city name for segment N specified in the Russian or English language

	15
	Yes
	S{N}-ELOCATIONCITY
	Arrival city name for segment N specified in the Russian or English language

	16
	Yes
	S{N}-FLIGHTNUMBER
	Flight number for segment N

	17
	Yes
	P{M}-FIRSTNAME
	Passenger M name

	18
	Yes
	P{M}-LASTNAME
	Passenger M surname

Additional clarifications:
· S{N} – a reference to a flight segment number. A segment here means a flight from one airport to another without stops. Parameter {N} is a number from 1 to 99. This means that a full segment name may be S1 to S99.
· P{M} – specifies the passenger number. The {M} parameter is a number from 1 to 99. This means that a full parameter name may be P1 to P99.

Example of filling in the parameters:
	№№
	Field name
	Field value

	1
	TICKET
	5WY8FZ

	2
	LANGUAGE
	RU

	3
	USER_FIRST_NAME
	Maxim

	4
	USER_LAST_NAME
	Zhukoveckiy

	5
	USER_MOBILE_PHONE
	+7 9055457319

	6
	USER_HOME_PHONE
	null

	7
	USER_EMAIL
	11@11.ru

	8
	S{N}-BDATE
	Tuesday , January 22, 2013 6:40:00 AM

	9
	S{N}-EDATE
	Tuesday , January 22, 2013 7:25:00 AM

	10
	S{N}-BLOCATIONCOUN
	Russian Federation

	11
	S{N}-ELOCATIONCOUN
	Russian Federation

	12
	S{N}-BLOCATIONCODE
	PEE

	13
	S{N}-ELOCATIONCODE
	LED

	14
	S{N}-BLOCATIONCITY
	Perm

	15
	S{N}-ELOCATIONCITY
	Saint-Petersburg

	16
	S{N}-FLIGHTNUMBER
	712

	17
	P{M}-FIRSTNAME
	Maxim

	18
	P{M}-LASTNAME
	Zhukoveckiy

[bookmark: _Toc256000131][bookmark: scroll-bookmark-166]Additional information passed on booking and paying for an hotel
The table containing the names of additional fields and their descriptions is given below.
	№№
	Mandatory
	Field name
	Description

	1
	No
	HLANGUAGE
	Language of the nationality of the customer who books a ticket

	2
	Yes
	HUSER_FIRST_NAME
	Name of the customer who books a ticket

	3
	Yes
	HUSER_LAST_NAME
	Surname of the customer who books a ticket

	4
	No
	HUSER_MOBILE_PHONE
	Mobile phone number of the customer who books a ticket

	5
	No
	HUSER_HOME_PHONE
	Landline phone number of the customer who books a ticket

	6
	Yes
	HUSER_EMAIL
	Email address of the customer who books a ticket

	7
	Yes
	H{N}­-BDATE
	Check in date for hotel N

	8
	Yes
	H{N}­-EDATE
	Checkout date for hotel N

	9
	Yes
	H{N}-­LOCATIONCOUN
	Name of the country of hotel N specified in the Russian or English language

	10
	Yes
	H{N}­-SLOCATIONCOUN
	Name of the city of hotel N specified in the Russian or English language

	11
	Yes
	H{N}­-NAME
	Name of hotel N specified in the Russian or English language

	12
	Yes
	H{N}-­GCOUNT
	Number of guests in hotel N. It is necessary to specify the number of adults and the number of children separated by a colon (:)

	13
	Yes
	H{M}­-GFIRSTNAME
	Name of guest M

	14
	Yes
	H{M}-­GLASTNAME
	Surname of guest M

Additional clarifications:
· H{N} – specifies the number of the hotel in the booking list. The booking list implies that a customer can book several hotels and move between them over time. Parameter {N} is a number from 1 to 99. That is, the full parameter name may be H1 to H99.
· H{N}­-GCOUNT – the total number of guests that specifies the number of adults and children. For example, if a booking in an hotel is for two adults and one child, it is necessary to specify "2:1", if a booking in an hotel is for two adults without children, it is necessary to specify "2:0".
Checking in a child without adults is also possible (for example, language schools or internships). Т. That is, if a booking in an hotel is for two children without adults, it is necessary to specify "0:2".
· H{M} – specifies the number of a guest. Parameter {M} is a number from 1 to 99. That is, the full parameter name
may be H1 to H99.
It is possible to send the details only on one guest and the total number of guests as usually hotels require detailed information on only one person and on the total number of guests to sojourn. In this case it is possible to pass information only about the selected guest and about the total amount of guests.

Example of filling in the parameters:
	№№
	Field name
	Field value

	1
	HLANGUAGE
	RU

	2
	HUSER_FIRST_NAME
	Maxim

	3
	HUSER_LAST_NAME
	Zhukoveckiy

	4
	HUSER_MOBILE_PHONE
	+7 9055457319

	5
	HUSER_HOME_PHONE
	null

	6
	HUSER_EMAIL
	11@11. r u

	7
	H{N}­-BDATE
	Tuesday, Januar y 22, 2013

	8
	H{N}-­EDATE
	Wednesday, Januar y 23, 2013

	9
	H{N}­-LOCATIONCOUN
	Russian Federation

	10
	H{N}­-SLOCATIONCOUN
	Saint-Petersburg

	11
	H{N}­-NAME
	Akyan St­-Petersburg

	12
	H{N}­-GCOUNT
	2:0

	13
	H{M}­-GFIRSTNAME
	Maxim

	14
	H{M}­-GLASTNAME
	Zhukoveckiy

[bookmark: _Toc256000132][bookmark: scroll-bookmark-167]Appendix 3. Response codes - interpretation of actionCode (responses from the processing system)
Response code is a numeric code that designates the result of an operation performed by the user in the payment gateway system. The following codes are defined in the system.
	Action code
	error_id
	error_message
	Description
	The messages recommended for a customer are:

	-20010
	-20010
	Blocked by the limit
	Transaction is rejected because the payment amount exceeds the limit specified by the Issuing bank
	Payment error. Try again later. If this error occurs repeatedly, contact your bank for more details. You can find the telephone number of the bank on the back side of your bank card.

	-9000
	-9000
	Started
	State of transaction start
	On getting this actionCode, no messages are displayed to the customer.

	-3003
	-3003
	Unknown
	Unknown
	Payment error. Try again later.

	-2102
	-2102
	Reject by a passenger name
	Reject by a passenger name
	Payment error. Contact the representative of the merchant for clarification of the reasons.

	-2101
	-2101
	Reject by email
	Reject by email
	Payment error. Contact the representative of the merchant for clarification of the reasons.

	-2020
	-2020
	Incorrect ECI is received
	Invalid ECI. This code means that ECI received in PaRes is not valid for the IPS. The rule applies only to MasterCard (01,02) and Visa (05,06), where the values in the brackets are the valid values for IPS.
	Payment error. Try again later.

	-2019
	-2019
	Declined by iReq in PARes
	PARes from the issuing bank contains iReq, which caused the payment rejection
	Payment error. Try again later. If this error occurs repeatedly, contact your bank for more details. You can find the telephone number of the bank on the back side of your bank card.

	-2018
	-2018
	Declined. DS connection timeout
	There is no access to Directory server Visa or MasterCard or a connection error occurred after card involvement request (VeReq). This is an error of interaction between payment gate and IPS servers due to technical problems on the side of IPS servers.
	Payment error. Try again later.

	-2017
	-2017
	Rejected. PARes status is not "Y"
	Rejected. PARes status is not "Y"
	Payment error. Contact the representative of the merchant for clarification of the reasons.

	-2016
	-2016
	VERes status is "U"
	Issuing bank could not determine if the card is 3D-Secure.
	Payment error. Try again later. If this error occurs repeatedly, contact your bank for more details. You can find the telephone number of the bank on the back side of your bank card.

	-2015
	-2015
	Declined by iReq in VERes
	VERes from DS contains iReq, which caused the payment rejection.
	Payment error. Try again later. If this error occurs repeatedly, contact your bank for more details. You can find the telephone number of the bank on the back side of your bank card.

	-2013
	-2013
	No attempts left
	All payment attempts were used.
	Payment error. Try again later.

	-2012
	-2012
	Operation is not supported
	This operation is not supported.
	Payment error. Try again later.

	-2011
	-2011
	PARes status is "U"
	Issuing bank was not able to perfor the authorization of a 3D-Secure card.
	Payment error. Try again later. If this error occurs repeatedly, contact your bank for more details. You can find the telephone number of the bank on the back side of your bank card.

	-2010
	-2010
	TDS_XID_MISMATCH
	Mismatching of XID.
	Payment error. Try again later. If this error occurs repeatedly, contact your bank for more details. You can find the telephone number of the bank on the back side of your bank card.

	-2008
	-2008
	INVALID_WALLET
	Incorrect wallet.
	This actionCode is not used.

	-2007
	2007
	The session time out has expired
	The period for entering card data has expired. The default timeout value is 20 minutes; the session timeout can be specified on registering an order; if a merchant has the "Non-standard session duration" privilege, the value specified in the merchant settings is used.
	Payment error. Try again later.

	-2006
	2006
	3D-Secure authorization failed
	Means that the issuing bank rejected the authentication (3D-Secure authorization has not been performed).
	Payment error. Try again later. If this error occurs repeatedly, contact your bank for more details. You can find the telephone number of the bank on the back side of your bank card.

	-2005
	2005
	3D-Secure signature check failed
	Means that RBS could not check issuing bank sign, i.e. PARes was readable, but the sign was wrong.
	Payment error. Try again later. If this error occurs repeatedly, contact your bank for more details. You can find the telephone number of the bank on the back side of your bank card.

	-2003
	-2003
	BLOCKED_BY_PORT
	Blocked by port.
	This actionCode is not used.

	-2002
	2002
	Blocked by the amount
	Transaction was rejected because the payment amount exceeded the configured limits.
 Note: The limits mean the limits of the issuing bank, or the daily turnover of the store, or the store limits for operations with the same card, or the store limits for the same operation.
	Payment error. Contact the representative of the merchant for clarification of the reasons.

	-2001
	2001
	Blocked by IP
	Transaction is rejected because the IP-address of the customer is in the black list.
	Payment error. Contact the representative of the merchant for clarification of the reasons.

	-2000
	2000
	BLOCKED_BY_PAN
	Transaction is rejected because the card number is in the black list.
	Payment error. Contact the representative of the merchant for clarification of the reasons.

	-102
	-102
	The payment is declined by the payment agent
	The payment is declined by the payment agent.
	Payment error. Try again later. If this error occurs repeatedly, contact your bank for more details. You can find the telephone number of the bank on the back side of your bank card.

	-100
	-100
	No payment attempted
	There were no payment attempts.
	On getting this actionCode, no messages are displayed to the customer.

	-1
	-1
	The processing system is unavailable
	The period of waiting for a response from the processing system has expired.
	Payment error. Try again later.

	0
	0
	Request is processed successfully
	Payment has been processed successfully.
	Successful transaction.

	1
	1
	Declined. The identity check is required.
	The identity confirmation is necessary to successfully complete the transaction. In case of an internet transaction (the present case) confirmation is impossible, so transaction is considered to be declined.
	Payment error. Try again later. If this error occurs repeatedly, contact your bank for more details. You can find the telephone number of the bank on the back side of your bank card.

	5
	5
	Processing the transaction is rejected by the network.
	Processing the transaction is rejected by the network.
	Payment error. Try again later. If this error occurs repeatedly, contact your bank for more details. You can find the telephone number of the bank on the back side of your bank card.

	15
	15
	IPS did not define the card issuer
	IPS cannot identify the issuing bank.
	Payment error. Try again later. If this error occurs repeatedly, contact your bank for more details. You can find the telephone number of the bank on the back side of your bank card.

	53
	53
	Invalid account
	The card does not exist in the processing systems.
	Payment declined. Contact the merchant.

	100
	100
	Card limits exceeded.
	Card limits exceeded (the issuing bank has declined a transaction with the card).
	Payment error. Try again later. If this error occurs repeatedly, contact your bank for more details. You can find the telephone number of the bank on the back side of your bank card.

	101
	101
	Incorrect card expiration date.
	Incorrect card expiration date.
	Check the card data entered. If this error occurs repeatedly, contact your bank for more details. You can find the telephone number of the bank on the back side of your bank card.

	103
	103
	Contact the issuing bank.
	There is no connection with the Issuing bank. Sales outlet needs to contact the Issuing bank.
	Payment error. Try again later. If this error occurs repeatedly, contact your bank for more details. You can find the telephone number of the bank on the back side of your bank card.

	104
	104
	Card account limits reached
	This is an attempt to perform a transaction for an account that has usage restrictions.
	Payment error. Try again later. If this error occurs repeatedly, contact your bank for more details. You can find the telephone number of the bank on the back side of your bank card.

	106
	106
	The maximum number of attempts to enter PIN is exceeded. The card might be temporarily blocked.
	The maximum number of attempts to enter PIN is exceeded. The card might be temporarily blocked.
	Payment error. Try again later. If this error occurs repeatedly, contact your bank for more details. You can find the telephone number of the bank on the back side of your bank card.

	109
	109
	Incorrect merchant identifier or terminal identifier
	Merchant or terminal identifier is incorrect or ACC is blocked at the processing system level.
	Payment error. Try again later. If this error occurs repeatedly, contact a representative of the merchant for more details.

	111
	111
	Incorrect card number
	Card number is incorrect.
	Check your card balance and verify the card details entered. If this error occurs repeatedly, contact your bank for more details. You can find the telephone number of the bank on the back side of your bank card.

	116
	116
	Insufficient funds.
	Transaction amount exceeds the available balance of the selected account.
	Payment error. Try again later. If this error occurs repeatedly, contact your bank for more details. You can find the telephone number of the bank on the back side of your bank card.

	120
	120
	Transaction was rejected by the issuing bank.
	The operation is declined: the transaction is not allowed by the Issuing bank. Response code of the IPS is 57. Address the issuing bank to clarify the reasons for rejection.
	Payment error. Try again later. If this error occurs repeatedly, contact your bank for more details. You can find the telephone number of the bank on the back side of your bank card.

	121
	121
	Available limit exceeded.
	This is an attempt to perform a transaction for an amount exceeding the day limit set by the issuing bank.
	Payment error. Try again later. If this error occurs repeatedly, contact your bank for more details. You can find the telephone number of the bank on the back side of your bank card.

	123
	123
	Available limit exceeded.
	Available limit of the number of transactions was exceeded: the customer has executed the maximum number of transactions within the limit cycle and tries to execute another one.
	Payment error. Try again later. If this error occurs repeatedly, contact your bank for more details. You can find the telephone number of the bank on the back side of your bank card.

	125
	125
	Card number is incorrect.
	Card number is incorrect. This error may have several meanings: an attempt to perform a refund for an amount exceeding the amount put on hold; an attempt to refund a zero amount. For AmEx this code means that an incorrect card expiration date was specified
	Check your card balance and verify the card details entered. If this error occurs repeatedly, contact your bank for more details. You can find the telephone number of the bank on the back side of your bank card.

	208
	208
	Card is lost
	Card is lost.
	Payment error. Try again later. If this error occurs repeatedly, contact your bank for more details. You can find the telephone number of the bank on the back side of your bank card.

	209
	209
	Card limits exceeded.
	Card limitations exceeded.
	Payment error. Try again later. If this error occurs repeatedly, contact your bank for more details. You can find the telephone number of the bank on the back side of your bank card.

	400
	400
	Reversal is processed.
	Reversal is processed.
	Payment has been reversed.

	902
	902
	Card limits exceeded.
	Card limitations (the Cardholder is attempting to perform a transaction that is forbidden for him).

	Payment error. Try again later. If this error occurs repeatedly, contact your bank for more details. You can find the telephone number of the bank on the back side of your bank card.

	903
	903
	Available limit exceeded.
	An attempt is made to perform a transaction for an amount exceeding the Issuing bank limit.
	Payment error. Try again later. If this error occurs repeatedly, contact your bank for more details. You can find the telephone number of the bank on the back side of your bank card.

	904
	904
	Incorrect format of the message
	The message format is incorrect from the point of view of the issuing bank.
	Payment error. Try again later. If this error occurs repeatedly, contact your bank for more details. You can find the telephone number of the bank on the back side of your bank card.

	907
	907
	No connection to the bank.
	No connection with the issuing bank. Authorization in the stand-in mode is not allowed for this card number (this mode means that the Issuing bank is unable to connect to the IPS, and, therefore, the transaction can be either processed offline with the further uploading to the back office or can be declined).
	Payment error. Try again later. If this error occurs repeatedly, contact your bank for more details. You can find the telephone number of the bank on the back side of your bank card.

	909
	909
	Impossible to process the operation.
	It is impossible to process the operation (a common error in the system functioning has occured). It is fixed by the payment network or the issuing bank.
	Payment error. Try again later. If this error occurs repeatedly, contact your bank for more details. You can find the telephone number of the bank on the back side of your bank card.

	910
	910
	No connection to the bank.
	Issuing bank is not available.
	Payment error. Try again later. If this error occurs repeatedly, contact your bank for more details. You can find the telephone number of the bank on the back side of your bank card.

	913
	913
	Incorrect format of the message.
	The message format is incorrect in terms of IPS.
	Payment error. Try again later. If this error occurs repeatedly, contact your bank for more details. You can find the telephone number of the bank on the back side of your bank card.

	914
	914
	Original transaction is not found
	Transaction is not found (when sending a completion, reversal or refund request).
	When getting this actionCode, no messages are displayed to the customer.

	999
	999
	Suspicion of fraud.
	The beginning of the transaction authorization is missed. Declined by fraud.
	Payment error. Try again later. If this error occurs repeatedly, contact a representative of the merchant for more details.

	1001
	1001
	Empty
	Empty (is specified at the moment of transaction authorization, when card details are not entered yet).
	On getting this actionCode, no messages are displayed to the customer.

	1004
	1004
	Authorization phase 1
	Authorization phase 1.
	On getting this actionCode, no messages are displayed to the customer.

	1005
	1005
	Authorization phase 2
	Authorization phase 2.
	On getting this actionCode, no messages are displayed to the customer.

	2001
	2001
	FRAUD
	Fraud (in terms of IPS).
	Payment error. Try again later. If this error occurs repeatedly, contact a representative of the merchant for more details.

	2002
	2002
	Incorrect operation
	Incorrect operation.
	Payment error. Try again later. If this error occurs repeatedly, contact a representative of the merchant for more details.

	2003
	2003
	SSL is forbidden
	SSL (not 3D-Secure/SecureCode) transactions are forbidden for the Merchant.
	Payment error. Try again later. If this error occurs repeatedly, contact a representative of the merchant for more details.

	2004
	2004
	SSL without CVC is forbidden
	Payment through SSL without CVC2 is forbidden.
	Payment error. Try again later. If this error occurs repeatedly, contact a representative of the merchant for more details.

	2005
	2005
	Order does not comply with the 3D-Secure rule
	The payment does not meet the conditions of the validation rule for 3D-Secure.
	Payment error. Try again later. If this error occurs repeatedly, contact a representative of the merchant for more details.

	2006
	2006
	One-phase payments are forbidden
	One-phase payments are forbidden.
	Payment error. Try again later. If this error occurs repeatedly, contact a representative of the merchant for more details.

	2007
	2007
	Order has already been paid
	The order is payed.
	Order has already been paid.

	2008
	2008
	Transaction has not been completed yet
	The transaction is not completed.
	On getting this actionCode, no messages are displayed to the customer.

	2009
	2009
	Refund amount exceeds the payment amount
	Refund amount exceeds deposited amount.
	Refund amount exceeds deposited amount.

	2014
	2014
	Error of 3DS rule execution.
	Error of 3DS rule execution.
	Payment error. Try again later. If this error occurs repeatedly, contact a representative of the merchant for more details.

	2015
	2015
	Error in executing the rule of terminal selection
	Error in the selection of a terminal rule (the rule is incorrect).
	Payment error. Contact a representative of the merchant for more details.

	2016
	2016
	3D-Secure is forbidden
	3-D Secure payment is necessary, but the merchant does not have permission for 3-D Secure payment.
	Payment error. Contact a representative of the merchant for more details.

	2023
	2023
	Thread limit is exceeded
	The queue of requests to be processed exceeded the allowed limit.
	Payment error. Try again later.

	4005
	4005
	Declined by the merchant
	The order was declined by the merchant.
	Declined by merchant.

	9001
	9001
	Internal RBS error
	RBS internal error.
	Payment error. Try again later.

	71015
	1015
	Entered data is incorrect
	Entered card details are incorrect.
	Check your card balance and verify the card details entered. If this error occurs repeatedly, contact your bank for more details. You can find the telephone number of the bank on the back side of your bank card.

	151017
	1017
	Decline. 3-D Secure comm error
	3-D Secure - communication error.
	Payment error. Try again later. If this error occurs repeatedly, contact a representative of the merchant for more details.

	151018
	018
	Decline. Processing timeout
	Processing timeout. Sending is failed.
	Payment error. Try again later. If this error occurs repeatedly, contact a representative of the merchant for more details.

	151019
	1019
	Decline. Processing timeout
	Processing timeout. Sending is success, response from the bank was not received.
	Payment error. Try again later. If this error occurs repeatedly, contact a representative of the merchant for more details.

	341014
	1014
	Decline. General Error
	RBS general error.
	Payment error. Try again later. If this error occurs repeatedly, contact a representative of the merchant for more details.

Appendix 3. Response codes - interpretation of actionCode (responses from the processing system) - Additional information passed on booking and paying for an hotel 298
image2.png
Client Merchant Payment gate ACS Fraud Control

1 Form order
—| 2. register order
Sttt N

3 orderld,formurl
4:Redirectto paymentform e - Sroendformn |

5. catppmertiom

6 :Paymentform

7: Send fled payment form data

1 i 8 Send ortier to fraud control
+ >

9: Fraud control result

opt
305 payment

D a:Check 3D Secure involvement

opt

i Redired clientto ACS
[ACS authorization rebired

{ii: Get authorization form

i Authorization form

‘Send filed authorization form

v: Redirect cient to the payment gate

| 10:Procsss payment

« 1: Redirect clieft o merchants store

12: Get page with payment
result

13:Get payment resuit
S

14:Payment result
15 Page with the result

image3.png
Client

Werchant

Payment gate

Fraud control

1: Form order

[romems)

4: Redirect to payment form

2: Register order with

preauthorization

3 orderd, fomUrl

7 : Send payment form data

8 Send order}

ACS

o raus contral

9 : Fraud contol result

opt
305 payment

[]

[ACS authorizatign

12: Get the result page

11: Redirect clientito the merchant's store

D a: Check 3-D Securel involvement

aures 1 redrectolent o ACS :

| - Get authorization fom | !

i i g

| i Authorization form |
R [T

1§ - Send filled authorization form | !

>
dmm e v:Rediect clientto payment gate | _ _ _ _ _ _ _ _ _ _
vi: Finish becure payment
; >
| [10- Creoxmoney nbis on he clentsaccount

[

15 : Page with the result

13: Get money hold result
——

142 Money hold result

16 : Deposit request

17 Deposit result

image4.png
|
B
I

Fraud control

Client Merchant Fayment gate

1 Form an order
| | 2:Regigerordenciietnia)

4: Redirect to payment form

5 et ppament om

6 :Payment form

7: Send data from filled payment form (card data or the
‘sslection of previbusly binded card)

N 5 Send orferto fraud contrl

9 Fraud fontrol result

opt

3DS payment) a: Check 3-D Secure] involvement

opt
[ACS authoriza|

Get authorization form

>|
iii - Authorization fom
e
Send filled authorization fom
>
direct client to the payment gat
D A A [

: 10 process payment
entto the merchants tore

12: Get page with the

f—paymentresut 13: Get payment result

RS

14: Payment result
15 : Page with the payment

image5.png
Client Mei

rchant

Payment gate CS

Fraud control

1: Form order

[romems)

4: Redirect to payment form

2.: Register order (clietnld)
indhiinthisba N |

3 orderld, fomurl

PRRSERSE
5: Get ppyment form
>
& Paymbnt form
R R
7 Send payment form (car oata that wil be used to |
make auto fayments) : !
t » 8: Send ordert fraud control

opt

ACS authorization

i: redirect lient to ACS

esquired — — — — — - =20

) : Get authorization form

[|
T T >
| it Autnorization form |
4 mmmm e § R bomemeaeaas
it - Send filled authorization form |
T T >
| viRedimctainttoacs |
D AR A A | S
v Finish becure payment ! |
i > |
H) 11 Process payment
| [12:create bindng |
. 13 - Redirectlfent to the tore :
14: Getpaymentreaut | | |
3% L[] 45 Getpaymentresut |
R |
16 : orderstatus, bindingld :
17 : Page with result - s s e |
R |

image6.png
opt

Client Werchant Payment gate ACS Fraud control
1 Form order 2 Regiserordervith :
[*| | oreauthorzation clietnis) , ;
4+ Redirect to payment form |
D |
5: Get ppyment form :
7+ Sendfilled payment fofm (card data that will be | |
used for autolpayments) : j
: > 8 Send orderlo fraud control
] >
| e
| 10 Check 30 Secus Invobement
RS autnonzaton <equired — ~ — — ~ - ' e |

Get authorization form

17 Page with payment result

i :
T T >
| i Authorization forn !
D [R bomemeaeaas
i} - Send flled authorization fom | :
T T >
v {Redirect dientto payment gate |
e gk kil g e,
vi: Finish becure payment
; >
| D 11 Process payment
| [2 crste sang
13 : Redirect fclient to the store
14 Get page with] |
payment resut 15: Get payment result
| 1o Cetparmentresit |

16 Payment result

18 Deposit request
G

19 Deposit result

image7.png
Client

14 Nepenanpasnenue no BackUr

i

15 : redirect to the payment status page

ton

0

18 Online sore

16: ayment status request

Werchant RBS PayByCiick sinvoicing
1 Form orger 2. Onser egisraton cetum URL) | | |
b H H
Order1D, Payment form URL | |
4 Redrrectto paymentfom | ¢ - -l j j
5: Get new payment form N | |
|¢....8: Paymentforwih the "Pay with AAlfa-Clieck bution_ ! !
7 : PayByClick duthorization form request (Order 1D, BackUI) . !
i 8:Orderinfo request (Order |
e |
.8 Omerino R |
i

11 Invoice approval

12 Result

D 10: Authentication and aut

orization

) 13: Asynchronous invoice approval

image8.png
18 Online sore

K

16 : Payment status check

Invoice approval

12 Result

Werchant RBS PayByCiick sinvoicing
12 Form order 2:Order registration (Client | | ;
fetum URL) ! !
3: Order ID ! !
4 @ PayByClickpaymentrequest | | |
Order ID, paymentivay) | | |
6 : Redirect to PyaByClick H |
- e | | |
7 : Request PayByClickauthorization form (Order I, BackUr) Ny |
| 8:Order info request (Order |
M 1D) |
2 |

10 : Authentication ~ and aufhorization

13 :Ag/nchronousinvoice approval

image9.png
Onnata 3aka3sa yepes PayByClick — Astopusauns — Buibop cuera

Vncbopmauus o sakase:

Mpoaasely QuKTHBHOE 10p ML AN TecTa PayByClick
Howep sakasa: Ofasd12345
Cymma sakasa: 1.00 RUR
Onucanie 3akasa:
Torun Anbcha-Kni:
Napons Anbta-Knik:

MponomiuTs.

image10.png
Onriara sakasa vepes PayByClick — ABTOPU3ALMS — BeiGop cuera

Vncbopmauus o sakase:

Mpoaasey; QuKTHBHOE 10p ML AN TecTa PayByClick
Howep sakasa: 22asdafat

Cymma sakasa: 7,897.89 RUR

Onucanie 3akasa: TecTobii saka3

“[1n5 AOCTYNa K CIMCKY CHETOS M NOATBEPXAEHIS OTNATS 32K353 Bal HeOTXORIMO BBECTH pasoBsii napons.
SHS CooBierie C Napone Kanpasexo Ha Bau MODKTBHSI Tenedor.

Oaropasosii napors: | TlonyuTs napors MoBTopHo

MponomiuTs.

image11.png
Onnara sakasa yepes PayByClick — Aetopusauns — BblOOp cueTa

Vncbopmauus o sakase:

Mpoaasey; QuKTHBHOE 10p ML AN TecTa PayByClick
Howep sakasa: 5asdafat

Cymma sakasa: 7,897.89 RUR

Onucanie 3akasa: TecTobii saka3

Co cueta ‘3aprnarHiii cuet I (Knuent HPB) - 42301810904000004328 - 18992516.43 RUR

BiiGepute CueT U HaXMITE KHOMKy OnnaTiTs

OnnamTs

image12.png
Testing C...-UPOP.xls

image13.png
jent

1: Form order 2 Register order (client retum

URL)

|3 ; Oroerto, Paymjent forn URL

4 : Redirect to payment form
« 2 1

5 Gétpaymentfom

5 - Biplay paymit form

7: Click"Pay via UPOP"

8: Paymentvia CUP request

Request client data

10 Send client data

D 11 Process payment

12 Rediettothe page it payment et

13: Get thé page with payment results

14 Checkpayment atus

le - ---15. Checkreailts.

D 16 : Order status update

17 Redirect o the prline sare page.

13
b

image14.png
lient

6

Werchant

1: Form order

Redirect to the CUP
sytem

2: Register order (Client retum

3: Order D

4 : Payment via UPOP request
(Order D, paymentWay)

7 CUP ahithorization form request (Order ID, BckUrl)

URL)

9 Send client data

8} Authorization form in the CUP sderh

11: Mepenanpasnenne no Back

12 Get page vith payment results

16 Redirect to thd online sore page

13 Checkpayment tatus

Checkresult _ -

le -

D 15 : Order status update

D 10 : Process payment

image15.png
order Amount: 1.00 ruB Order Number: 2013106193544780 Merchant Name: TCT Order detailsl:

UnionPay Card Payment |- L1

Enter card number: Sign in before you pay, for a faster checkout!

1. Enter cardNO. # 2. Verify card Info. # 3. Complete User name: Register faster

‘ Password: Retrieve password?

image16.png
Card Number:

PIN:

Mobile Phone Number:

SMIS Code:

Order Number: 2013106193544780 Merchant Name: Tcn

eBank Payment

B 6222"*++8371 (DebitCard) | Choose other carg

Please enter the cash withdrawal PIN of your bank card

139"**496 s it changed?

|| Freesus |

Please enter the SWS verification code you received

Confirm and Pa)

Order details[+]

image17.png
Q Payment Succeed 1.00 RUB !

To view merchant order status please click LT ILRIELIELS

You also can: Inquiry ransaction records

image18.png
Payment scheme

Client Mobila app orweb scripts ™ Apple Pay Payment gate

1. Select paymentvia

Apple Pay. 3. Create

PKPayrentToken
Object that contains
! paymentdata property
with the encrypted
ent data.

Send payment data.

R ——— H

4. Send payment data.

Extract paymentdata’
and encode itin
Based.

)

6. Send payment
request with the Base64 |
ncoded paymentData. |

7. Decrypt payment
data,

8. Send responss with
payment resilt

9. Display payment
result

image19.png
Cxema onnartbl

Client

Android Pay Paymentaate

1. Select paymentvia
Andnid Pay.
- &

2. Request card data
and pass pulic key.
[

4. Display payment dat
-—
5. Confim payment

3. Retum card data.
-—

—_—

Send request to get

Bncypled payment data. | 7. Form enciypted

payment data
B

8 Send encrypted data

|

9. Payment request

10. Decrypt payment
data and process
ayment

1. Retum payment
result

12. Display payment
result

-—

+

image20.png
Payment scheme

Client Web page. Android Pay Payment gate

1. Select paymentvia

Andnid Pay.

— ! 2.Sendpayment

equest and pass public
ey

3. Form encrypted
payment data

|

4. Send encrypted
payment data

|

5. Payment request

6. Decrypt payment data
rocess payment

7. Retum payment
result

8. Display payment
result

-—

image21.png
Payment scheme

Samsunq Pay Paymentaate

1. Select paymentvia
‘Samsung Pay.

-
2. Send payment

request

|

4. retum answerthat
contains
3ds.data parameter
with the encrypted
payment data

H Device check

Lot data. |
5. Payment requést payrentToken 6. Decrypt
parameter contains 3s. data. payment data
- nd process
ymnets

i 7.Rewm payment
8. Display payment ; result
result

D —

image22.png
Order register and payment +

Number Date ~

Static ~ | Batch operations ~

Static upload and dowrioad

Payment page customization

image23.png
Orders Refunds Audt - Adminitration + Fiscalization options Order register and payment ~ Static Batch operations ~

Loading payment page items
Loading payment page fems.

Ttem to upload: v

image24.png
Orders Refunds Audit~ Administration * Fiscalzation options Orcer register and payment + Static + Batch operations *

Loading payment page items
Loading payment page fems.

tem to upload: [Logd 5

image25.png
Orders Refunds Audt ~ Adminisration + Fiscalization options Order register and payment ~ Static =

Loading payment page items
Loading payment page fems.

tem to upload: | Footer &

Upload

image26.png
A Anbda-BaHk

Store astepanov

Order number 8000

Session time left
23:38:13

Enter th number

Cvv/cve

Lastthree
digits on the
signature line

ayment

FOOTER

et "Visn @

Securod by Qune

image27.png
O e andoymen - [t setchaprtons -

Payment page customization

image28.png
][choose fie

Upload

'Download tempiate static

image29.png

image30.png
A wfa-gank

Payment amount 100.00 £

Order number. 4003
Payment description:

Carddota

ey
[E——
J—— owaowes
sonuary < (2017
Carcnoldes name Whatis 7
Mu=VvIsA@d

3. nowra enagensus Kapre

1 hersy sges t racee & mal messages fom AD <ALFA BANKs coniing lomaion o1
Paymant ik o e .l s30ess | v et

Honiep Tenecbona enazensLa Kapre

1 hershy sgee ecev messagesfom A0 wALFABANKG conaiing ifomation n paymert
ST e phore number | e 363

image1.png

